分からない問題はここに書いてね433

レス数が1000を超えています。これ以上書き込みはできません。
1 132人目の素数さん 2017/09/02(土) 23:28:59 ID:
さあ、今日も1日頑張ろう★☆

前スレ
分からない問題はここに書いてね432 [無断転載禁止]©2ch.net
https://2ch.live/cache/view/math/1503459984

2 ¥ ◆2VB8wsVUoo 2017/09/02(土) 23:29:46 ID:

3 132人目の素数さん 2017/09/02(土) 23:52:04 ID:
削除依頼を出しました

4 132人目の素数さん 2017/09/03(日) 00:24:38 ID:
前スレ

771 名前:132人目の素数さん [sage] :2017/08/31(木) 10:24:16.51 ID:qb5hsQxt
行列式が正の 実n次行列全体が作る (その成分についての) n^2 次位相空間が連結である事を示してください。
かなり明らかに思えるのですがどうやって証明したらいいのか分かりません。

775 名前:132人目の素数さん [sage] :2017/08/31(木) 11:44:37.77 ID:MiVf/vmG
>>771
簡単に反例が作れるだろ

806 名前:132人目の素数さん [sage] :2017/09/01(金) 02:19:28.68 ID:q0AB+hds
>>779
固有値を考えてみろよ

938 名前:132人目の素数さん [sage] :2017/09/02(土) 12:36:50.31 ID:r5P5oyGU
>>775
なぜ固有値を考えたら簡単に反例を作れるのですか?
もしそれが正しいのなら、行列式が正の実n次正方行列全体が連結でなくなるようなnは例えばどんなものがあるのでしょうか?

941 名前:132人目の素数さん [sage] :2017/09/02(土) 13:04:06.41 ID:VuHmNbWo
>>938
n=2
「2つの固有値が正」と「2つの固有値が負」

5 132人目の素数さん 2017/09/03(日) 00:26:45 ID:
>>4
スレ変わったしもう一回聞くね
なんでそれでGL+(2;R)が連結でないことが言えるの?
(-1,0,0,-1)と(1,0,0,1)はそれぞれ2つの固有値が負の行列と正の行列だけど,道f,gを
f(t)=(1-t,t,-t,1-t)
g(t)=(-t,1-t,-1+t,-t)
としたらfgは2つの行列を結ぶ道になるのだが

6 132人目の素数さん 2017/09/03(日) 00:42:31 ID:
前スレ

981 自分:132人目の素数さん[] 投稿日:2017/09/02(土) 18:35:32.53 ID:oEmSQ6IS [1/5]
防災無線で調子に乗った内容

「かんこく卒業おめでとう。」

なんて言ってんじゃねーよ。糞Jap!

982 自分:132人目の素数さん[] 投稿日:2017/09/02(土) 18:36:01.78 ID:oEmSQ6IS [2/5]
黙れボケ

983 自分:132人目の素数さん[] 投稿日:2017/09/02(土) 18:37:40.11 ID:oEmSQ6IS [3/5]
どの糞放送局のラジオですか。

ここら辺のド田舎の糞ガキの声ですか、どちらですか?

984 自分:132人目の素数さん[] 投稿日:2017/09/02(土) 18:40:03.21 ID:oEmSQ6IS [4/5]
こんなふざけた、音声が流れる国は

無勉強で偏差値75の人間を学区4位の偏差値19下の
凡庸な高校に叩き込む国家のやることは違いますね。

985 自分:132人目の素数さん[] 投稿日:2017/09/02(土) 18:41:26.82 ID:oEmSQ6IS [5/5]
昨日書かなかったから、どうのこうの電話で話す声が聞こえてきましたが

残念でした。私を怒らせると何か、私以外の人間にメリットでもあるのでしょうか?

7 132人目の素数さん 2017/09/03(日) 00:43:41 ID:
前スレの訂正

>>981 訂正
×防災無線
〇有線放送

>>983
×ラジオですか
〇ラジオかテレビか、それともただ放送を行っている家の中での音声
かは分からないが

8 132人目の素数さん 2017/09/03(日) 00:48:21 ID:
Jアラートに関して批判しても仕方がないという論調もあるようですが
某国のミサイルは最短で4分くらいでこの国に着弾することが
できそうですから、少なくとも発射から2分以内くらいには
作動しなければ、避難行動を取ることができず、効果が限定的になると
考えられると思いますが、そのような報道は一切なされていない
ように思いますが、何故でしょうか?

9 132人目の素数さん 2017/09/03(日) 02:50:11 ID:
>>5
トレースを考えれば正と負を結ぶ道は必ず0を通る
トレース0なら行列式は正でない

10 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:12:06 ID:

11 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:12:29 ID:

12 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:12:47 ID:

13 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:13:03 ID:

14 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:13:20 ID:

15 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:13:38 ID:

16 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:13:58 ID:

17 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:14:16 ID:

18 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:14:37 ID:

19 ¥ ◆2VB8wsVUoo 2017/09/03(日) 03:14:57 ID:

20 132人目の素数さん 2017/09/03(日) 06:55:57 ID:
>>9
| 0 -1 |
| 1 0 |

21 ¥ ◆2VB8wsVUoo 2017/09/03(日) 07:43:56 ID:

22 132人目の素数さん 2017/09/03(日) 08:43:17 ID:
古典的名著に学ぶ微積分の基礎
高瀬 正仁
固定リンク: http://amzn.asia/5FfCweR

今、↑の本を読んでいます。

解析概論のこの部分は難しいだのなんだの単なる読書感想文ですね。

23 132人目の素数さん 2017/09/03(日) 08:44:38 ID:
>>9
トレースを考えればってトレースを使って連続写像[0,1]→GL+(2;R)をどう定義するのか謎だし
弧状連結の定義は道が存在することなのだから>>5のfgが正と負の2つの行列を結ぶ道なのは変わらないし

24 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:05:59 ID:

25 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:06:17 ID:

26 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:06:35 ID:

27 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:06:51 ID:

28 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:07:09 ID:

29 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:07:25 ID:

30 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:07:41 ID:

31 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:07:57 ID:

32 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:08:13 ID:

33 ¥ ◆2VB8wsVUoo 2017/09/03(日) 09:08:29 ID:

34 132人目の素数さん 2017/09/03(日) 10:20:42 ID:
一般フィボナッチ数列についてです

nを0以上の整数とし、
f(n)を
f(0)=0,f(1)は任意の整数, a×f(n)+b×f(n+1)=f(n+2)
と定義する

pを素数とする
b^2+4aがmodpで平方非剰余のとき、f((p+1)m) (mは0以上の整数)がpの倍数に、
b^2+4aがmodpで平方剰余のとき、f((p-1)m) (mは0以上の整数)がpの倍数に、
b^2+4aがmodpで0のとき、f(pm) (mは0以上の整数)がpの倍数になる
と予想しました

証明反例教えてくれる方いたらお願いします

35 132人目の素数さん 2017/09/03(日) 10:57:00 ID:
数学の全ての分野を究めたい。

36 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:02:23 ID:

37 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:02:39 ID:

38 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:02:56 ID:

39 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:03:13 ID:

40 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:03:28 ID:

41 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:03:46 ID:

42 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:04:03 ID:

43 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:04:21 ID:

44 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:04:40 ID:

45 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:04:59 ID:

46 132人目の素数さん 2017/09/03(日) 11:39:10 ID:
>>20
連結の証明が出来るじゃねーか

47 132人目の素数さん 2017/09/03(日) 11:46:07 ID:
>>35
誰しもが最初そう思うのかもしれませんが,実際にはいくつかの教科書が読めれば十分と考えるようになります

48 132人目の素数さん 2017/09/03(日) 11:53:21 ID:
>>46
GL(n,R)の連結成分は2つで、行列式が正の行列全体と負の行列全体って
位相群少しかじった人にとっては常識だぞ
ちなみにGL(n,C)は連結な

49 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:58:44 ID:

50 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:59:02 ID:

51 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:59:18 ID:

52 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:59:32 ID:

53 ¥ ◆2VB8wsVUoo 2017/09/03(日) 11:59:51 ID:

54 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:00:07 ID:

55 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:00:23 ID:

56 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:00:40 ID:

57 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:00:58 ID:

58 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:01:18 ID:

59 132人目の素数さん 2017/09/03(日) 12:16:29 ID:
計算機科学者と宇宙飛行士はどっちの方が頭がいいですか?

60 132人目の素数さん 2017/09/03(日) 12:33:06 ID:
「パンと白飯どっちが好き?」くらい主観的で無意味な質問

61 132人目の素数さん 2017/09/03(日) 12:39:52 ID:
日本人は全員ゴミ

62 132人目の素数さん 2017/09/03(日) 12:45:23 ID:
>>60
>>59は「ヒマラヤ」という物理板の荒らしなのでスルーしてね

63 132人目の素数さん 2017/09/03(日) 12:50:01 ID:
>>48
だろうなー

64 132人目の素数さん 2017/09/03(日) 12:54:20 ID:
>>34

a = 1
b = 1
p = 2
m = 1
f(1) = 1

とする。

b^2 + 4*a = 1 + 4 = 5 ≡ 1 = 1^2 (mod p)

f((p - 1)*m) = f(1) = 1 は p = 2 の倍数ではない。

65 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:54:28 ID:

66 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:54:45 ID:

67 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:55:04 ID:

68 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:55:21 ID:

69 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:55:38 ID:

70 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:55:55 ID:

71 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:56:18 ID:

72 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:56:53 ID:

73 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:57:12 ID:

74 ¥ ◆2VB8wsVUoo 2017/09/03(日) 12:57:31 ID:

75 132人目の素数さん 2017/09/03(日) 12:58:20 ID:
訂正します:


>>34

p = 2
m = 1
f(1) = 1

とする。

b^2 + 4*a = 1 + 4 = 5 ≡ 1 = 1^2 (mod p)

f((p - 1)*m) = f(1) = 1 は p = 2 の倍数ではない。

76 ¥ ◆2VB8wsVUoo 2017/09/03(日) 13:06:58 ID:

77 ¥ ◆2VB8wsVUoo 2017/09/03(日) 13:22:55 ID:

78 132人目の素数さん 2017/09/03(日) 13:28:12 ID:
あ、最初のほうが正しいですね。

訂正します:

>>34

a = 1
b = 1
p = 2
m = 1
f(1) = 1

とする。

b^2 + 4*a = 1 + 4 = 5 ≡ 1 = 1^2 (mod p)

f((p - 1)*m) = f(1) = 1 は p = 2 の倍数ではない。

79 132人目の素数さん 2017/09/03(日) 13:40:29 ID:
>>64>>75>>78
……確かにそうですね
pが奇素数のとき、という条件が必要で、p=2のときは別に考えた方がいいみたいですね
p=2のときは、a,bが奇数のとき、f(3m)が2の倍数になる。とすればいいのでしょうか

あと、一般に、a,bはpと互いに素、という条件が必要なようですね。穴だらけの予想を書いてしまいすみませんでした

レスありがとうございます 間違いに気付けました

80 132人目の素数さん 2017/09/03(日) 13:47:45 ID:
カジノのルーレットで毎回赤にかけるのと
黒が連続3回続いたあとにだけ赤にかけるとではどちらが当たる確率は高いですか?

81 132人目の素数さん 2017/09/03(日) 13:48:43 ID:
>>80
変わらない

82 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:12:17 ID:

83 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:12:35 ID:

84 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:12:53 ID:

85 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:13:10 ID:

86 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:13:27 ID:

87 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:13:44 ID:

88 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:14:01 ID:

89 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:14:18 ID:

90 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:14:36 ID:

91 ¥ ◆2VB8wsVUoo 2017/09/03(日) 14:14:54 ID:

92 132人目の素数さん 2017/09/03(日) 16:58:13 ID:
すいませんめちゃくちゃ簡単な問題です

r^2-2ar-a^2=0

この方程式のrの値が知りたいです
解き方とかあればお願いします

93 132人目の素数さん 2017/09/03(日) 17:03:25 ID:
>>92
r=x,つまりrをxに置き換えて、
x^2-2ax-a^2=0
これを二次方程式の解の公式に当てはめて
x=(2a±√(4a^2+4a^2))/2
=(1±√2)×a
とかでどうでしょうか

94 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:04:19 ID:

95 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:04:36 ID:

96 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:04:53 ID:

97 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:05:11 ID:

98 132人目の素数さん 2017/09/03(日) 17:05:28 ID:
>>93
分かりました!
ありがとうございますm(__)m

99 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:05:28 ID:

100 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:05:45 ID:

101 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:06:02 ID:

102 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:06:19 ID:

103 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:06:36 ID:

104 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:06:52 ID:

105 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:07:10 ID:

106 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:07:28 ID:

107 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:07:46 ID:

108 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:08:02 ID:

109 132人目の素数さん 2017/09/03(日) 17:23:13 ID:
>>22
君も読書感想文が好きだよね

110 ¥ ◆2VB8wsVUoo 2017/09/03(日) 17:37:41 ID:

111 132人目の素数さん 2017/09/03(日) 18:27:24 ID:
Serge Lang著『Undergraduate Analysis』を読んでいます。

↓の赤い線を引いたところを見てください。

これはひどい間違いですね。
ちょっと理解不能な間違いです。

https://imgur.com/z1bLEIR.jpg

112 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:30:31 ID:

113 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:30:49 ID:

114 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:31:06 ID:

115 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:31:24 ID:

116 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:31:40 ID:

117 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:31:56 ID:

118 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:32:13 ID:

119 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:32:30 ID:

120 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:32:47 ID:

121 ¥ ◆2VB8wsVUoo 2017/09/03(日) 18:33:04 ID:

122 132人目の素数さん 2017/09/03(日) 18:34:56 ID:
Lang の↓この本ですが、非常に記述にむらがあります。

馬鹿みたいに丁寧に書くところがあるかと思えば、

↓の周辺のように非常に雑な書き方のところがあったりします。

https://imgur.com/z1bLEIR.jpg

123 132人目の素数さん 2017/09/03(日) 18:36:31 ID:
書き忘れましたが、

https://imgur.com/z1bLEIR.jpg

↑この周辺では、

m を正の整数として、

e^x / x^m → ∞

を証明しようとしています。

124 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:08:41 ID:

125 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:08:58 ID:

126 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:09:15 ID:

127 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:09:34 ID:

128 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:09:50 ID:

129 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:10:06 ID:

130 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:10:23 ID:

131 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:10:41 ID:

132 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:11:00 ID:

133 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:11:17 ID:

134 132人目の素数さん 2017/09/03(日) 19:19:32 ID:
https://imgur.com/z1bLEIR.jpg

log(e^x / x^m) = x - m * log(x) = x * (1 - m * log(x) / x) = x * (1 - m * log(x) / e^log(x))

log(x) / e^log(x) → 0 (x → ∞)

だから、

x * (1 - m * log(x) / e^log(x)) → ∞ (x → ∞)

と書くのが正解ですよね。

135 132人目の素数さん 2017/09/03(日) 19:23:51 ID:
ところで、なぜLangは、

e^x / x^m → ∞

の証明にこんなにこだわるんですかね?

1ページ以上使っています。

136 132人目の素数さん 2017/09/03(日) 19:30:07 ID:
>>135
e^x をテイラー展開すればわかるとおり,どんなn次関数よりも早く発散する/収束するんだよ
それは e^x の本質なので,直接的に証明したかったんじゃなかったかな?

137 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:31:08 ID:

138 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:31:26 ID:

139 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:31:44 ID:

140 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:32:00 ID:

141 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:32:16 ID:

142 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:32:33 ID:

143 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:32:48 ID:

144 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:33:05 ID:

145 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:33:21 ID:

146 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:33:36 ID:

147 ¥ ◆2VB8wsVUoo 2017/09/03(日) 19:33:53 ID:

148 132人目の素数さん 2017/09/03(日) 21:20:04 ID:
>>135
ところで、なぜキミは、
書物の記述にこだわるんですかね?
何スレも使っています。

149 132人目の素数さん 2017/09/03(日) 21:21:08 ID:
難関大学の理系に合格する程度の数学力はありますが、この程度でいきなり大学の統計学を学び始めても大丈夫ですか?
3ヶ月で大学院入試レベルの問題を解けることを目標にしています。

150 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:21:43 ID:

151 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:22:07 ID:

152 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:22:25 ID:

153 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:22:43 ID:

154 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:23:02 ID:

155 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:23:21 ID:

156 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:23:38 ID:

157 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:24:02 ID:

158 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:24:24 ID:

159 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:24:43 ID:

160 132人目の素数さん 2017/09/03(日) 21:28:10 ID:
>>149
大学レベルの微積分の知識が必要となるので、まずはそちらから始めた方が良いでしょう

まあ受験の他の科目を詰めとくのが一番良いかと思いますが

161 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:31:17 ID:

162 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:31:37 ID:

163 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:31:56 ID:

164 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:32:13 ID:

165 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:32:29 ID:

166 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:32:44 ID:

167 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:33:00 ID:

168 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:33:17 ID:

169 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:33:34 ID:

170 ¥ ◆2VB8wsVUoo 2017/09/03(日) 21:33:50 ID:

171 132人目の素数さん 2017/09/03(日) 22:17:12 ID:
>>160
回答してくださってありがとうございます。
まずは受験科目で比較的苦手な国語と英語を詰めようと思います。
余裕があれば、仰ってくださったように大学微積分を少しずつやっていきます。

172 ¥ ◆2VB8wsVUoo 2017/09/04(月) 01:59:18 ID:

173 ¥ ◆2VB8wsVUoo 2017/09/04(月) 01:59:41 ID:

174 ¥ ◆2VB8wsVUoo 2017/09/04(月) 01:59:57 ID:

175 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:00:13 ID:

176 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:00:28 ID:

177 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:01:03 ID:

178 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:01:19 ID:

179 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:01:39 ID:

180 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:01:56 ID:

181 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:02:13 ID:

182 132人目の素数さん 2017/09/04(月) 02:31:54 ID:
全宇宙に値段を付けるとしたら幾らぐらいになるのでしょうか?

183 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:34:56 ID:

184 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:35:15 ID:

185 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:35:35 ID:

186 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:35:53 ID:

187 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:36:12 ID:

188 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:36:31 ID:

189 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:36:48 ID:

190 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:37:06 ID:

191 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:37:27 ID:

192 ¥ ◆2VB8wsVUoo 2017/09/04(月) 02:37:44 ID:

193 132人目の素数さん 2017/09/04(月) 03:08:54 ID:
自分は生まれつきもの凄く頭が悪いのですが、東京大学理学部数学科に入って数学を学びたいという目標があります。
生まれつきもの凄く頭が悪い人でも、人並み外れた努力を積み重ねれば、その目標を実現することはできると思いますか?
どうでしょうか?

194 132人目の素数さん 2017/09/04(月) 03:18:45 ID:
>>123
>>135
e-1=h>0, B>0 とする。
x >0 に対して n を、n ≦ x/m < n+1 で定める。

e^(x/m)/(x/m)≧ e^n /(n+1)
=(1+h)^n /(n+1)
≧ C[n,2] hh /(n+1)  (←2項公式)
≧(n-2)/2・hh
> m B^(1/m),
ここに、N ≧ 2 + 2m B^(1/m)/hh とおいた。

n>N ⇒ e^x / x^m ={e^(x/m) / x}^m ≧ B,

195 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:32:26 ID:

196 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:32:44 ID:

197 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:33:01 ID:

198 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:33:17 ID:

199 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:33:34 ID:

200 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:33:50 ID:

201 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:34:06 ID:

202 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:34:24 ID:

203 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:34:40 ID:

204 ¥ ◆2VB8wsVUoo 2017/09/04(月) 03:34:58 ID:

205 132人目の素数さん 2017/09/04(月) 05:05:58 ID:
>>193
無理だと思います。物凄く頭が悪いなら努力をしても身に付かないと思われるからです。

206 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:03:23 ID:

207 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:03:40 ID:

208 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:03:58 ID:

209 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:04:14 ID:

210 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:04:31 ID:

211 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:04:48 ID:

212 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:05:05 ID:

213 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:05:21 ID:

214 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:05:40 ID:

215 ¥ ◆2VB8wsVUoo 2017/09/04(月) 06:05:57 ID:

216 132人目の素数さん 2017/09/04(月) 09:11:33 ID:
>>34
コンピュータと素因子分解
http://www2.odn.ne.jp/yuseisha/daiki/comp-c.htm
第5章 p +1 法
リュカ・テストの拡張

217 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:19:58 ID:

218 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:20:16 ID:

219 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:20:32 ID:

220 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:20:47 ID:

221 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:21:02 ID:

222 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:21:18 ID:

223 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:21:34 ID:

224 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:21:51 ID:

225 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:22:08 ID:

226 ¥ ◆2VB8wsVUoo 2017/09/04(月) 09:22:27 ID:

227 132人目の素数さん 2017/09/04(月) 10:13:09 ID:
以下の問題

Y= X^3 + ax^2 + 9x + bのグラフが、X=1で極大値2をとるとき
Y=(①)において極小値(②)である

計算
微分して Y'= 3X^2 + 2ax + 9
ここから a = -5, b = -3
つまり元の式は Y= X^3 -5x^2 + 9x - 3
導関数は Y' = 3X^2 -10x + 9 である

判別式の公式から、この解は 5±2 / 3
→ ① = 7/3
元の式に代入して
② = (7/3)^3 -5(7/3)^2 +9(7/3) -3 
 = -(392/27) + 19
 = 121/27

これ多分間違いなんですけど
どこが間違いなんでしょうか?
解けなくて自殺を考えています

228 132人目の素数さん 2017/09/04(月) 10:29:31 ID:
>微分して Y'= 3X^2 + 2ax + 9
>ここから a = -5, b = -3
X=1で極大値2を取るから、
3+2a+9=0、1+a+9+b=2、
∴ a=-6、b=-2
で計算間違い。後は殆ど同じように考えればいい。

229 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:38:31 ID:

230 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:38:50 ID:

231 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:39:07 ID:

232 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:39:23 ID:

233 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:39:40 ID:

234 132人目の素数さん 2017/09/04(月) 10:39:54 ID:
>>228
ありがとうございます
検討してみます

235 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:40:00 ID:

236 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:40:18 ID:

237 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:40:36 ID:

238 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:40:53 ID:

239 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:41:11 ID:

240 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:43:09 ID:

241 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:43:27 ID:

242 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:43:45 ID:

243 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:44:00 ID:

244 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:44:16 ID:

245 132人目の素数さん 2017/09/04(月) 10:50:49 ID:
ああそうか判った!
ありがとうございます

246 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:51:09 ID:

247 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:51:25 ID:

248 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:52:02 ID:

249 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:52:21 ID:

250 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:52:39 ID:

251 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:52:56 ID:

252 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:53:13 ID:

253 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:53:32 ID:

254 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:53:48 ID:

255 ¥ ◆2VB8wsVUoo 2017/09/04(月) 10:56:29 ID:

256 132人目の素数さん 2017/09/04(月) 13:27:31 ID:
>>216
この本に>>36の証明が書いてあるということでしょうか?
図書館で取り寄せてもらいます ありがとうございます

257 132人目の素数さん 2017/09/04(月) 13:28:18 ID:
>>36じゃなくて>>34の証明でした すみません

258 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:31:44 ID:

259 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:32:01 ID:

260 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:32:16 ID:

261 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:32:32 ID:

262 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:32:50 ID:

263 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:33:06 ID:

264 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:33:22 ID:

265 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:33:42 ID:

266 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:33:59 ID:

267 ¥ ◆2VB8wsVUoo 2017/09/04(月) 13:34:17 ID:

268 132人目の素数さん 2017/09/04(月) 13:54:54 ID:

269 132人目の素数さん 2017/09/04(月) 14:19:52 ID:
>>268
そうです!情報ありがとうございます

270 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:28:48 ID:

271 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:29:05 ID:

272 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:29:21 ID:

273 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:29:38 ID:

274 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:29:54 ID:

275 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:30:12 ID:

276 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:30:28 ID:

277 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:30:47 ID:

278 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:32:21 ID:

279 ¥ ◆2VB8wsVUoo 2017/09/04(月) 14:32:38 ID:

280 132人目の素数さん 2017/09/04(月) 17:35:09 ID:
 
http://avcast123.becfield.com/archives/19040.html

エロエロお姉さんwwwwwwwwwww

281 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:57:25 ID:

282 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:57:43 ID:

283 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:58:00 ID:

284 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:58:17 ID:

285 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:58:33 ID:

286 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:58:48 ID:

287 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:59:06 ID:

288 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:59:22 ID:

289 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:59:38 ID:

290 ¥ ◆2VB8wsVUoo 2017/09/04(月) 17:59:57 ID:

291 132人目の素数さん 2017/09/04(月) 19:29:05 ID:
>>182
平均的な値段でしょうな

292 132人目の素数さん 2017/09/04(月) 19:34:05 ID:
微分積分
吉田 伸生
固定リンク: http://amzn.asia/0XkBuW9

いよいよ発売ですね。

293 132人目の素数さん 2017/09/04(月) 19:43:23 ID:
>>292
何故微積分の簡単な本ばかり読んでいるのですか?

294 132人目の素数さん 2017/09/04(月) 20:35:57 ID:
https://imgur.com/GcGax9t.jpg

↑の問題6の(c)のグラフの例をMathematicaで描きました↓。

a = -2
b = 2
δ = 1

です。

https://imgur.com/bmOiJXO.jpg

295 132人目の素数さん 2017/09/04(月) 20:36:43 ID:
>>294

Serge Lang著『Undergraduate Analysis』の問題です。

296 132人目の素数さん 2017/09/04(月) 20:37:34 ID:
>>294

C^∞ 関数のグラフです。

297 132人目の素数さん 2017/09/04(月) 20:40:06 ID:
前スレで
(n,r)+(n,r+1)=(n+1,r+1)
のよくわからない説明をしていた者がいたが、普通に

Xを含むn+1個からr+1個選ぶとき
Xを選ぶ場合→残りはn個からr個選ぶ
Xを選ばない場合→Xを除くn個からr+1個選ぶ

298 132人目の素数さん 2017/09/04(月) 20:45:01 ID:
>>193
入ってから困るよね

299 132人目の素数さん 2017/09/04(月) 21:07:30 ID:
入れるくらいになったら入っても続ければ普通に大丈夫だろ

300 132人目の素数さん 2017/09/04(月) 22:09:21 ID:
元利均等返済の支払総額 > 元金均等返済の支払総額を証明したい。

月利rでNヶ月で返済のとき

N*r*(1+r)^N/((1+r)^N-1)  >  ( 1 + r*(N+1)/2) 

が常に成り立つことの証明に帰着することまではわかった。

301 132人目の素数さん 2017/09/04(月) 22:11:36 ID:
>>193
頭が悪いなら医学部を選べ
本当に頭のいいやつは理学部か工学部にいく。
本当に頭の悪いやつは底辺私立医大にいく。

302 132人目の素数さん 2017/09/04(月) 23:22:48 ID:
https://imgur.com/JkPH9FY.jpg

↑は、

An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
by William Feller
Link: http://a.co/e0qCus2

です。

昔の人の本なので、実験結果の数値が間違っているのではないかと思いましたが、
↓Mathematicaで計算した結果とぴったり一致しました。

https://imgur.com/F7faVnZ.jpg

303 132人目の素数さん 2017/09/04(月) 23:36:40 ID:
An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
by William Feller
Link: http://a.co/e0qCus2

↑の本を読んでいて、 n^n と n! の大きさはどれくらい違うかを感覚的に分からせる
説明を思いつきました↓。

n 個のボールをランダムに n 個の箱に入れる場合、全部の箱の中にボールが入る
確率は、 n! / n^n であるが、直観的に、この確率は非常に小さいことが分かる。

304 132人目の素数さん 2017/09/04(月) 23:51:32 ID:
確率の多寡の直感なんてアテにならんし、その直感的説明はどの程度のオーダーになるか何も言ってない

305 132人目の素数さん 2017/09/04(月) 23:57:36 ID:

n無限と0の時その数列はどこに収束するわけ

306 132人目の素数さん 2017/09/05(火) 00:28:04 ID:
この問題が分かりません。(1)は不定形になって、それをどう解消するかで詰まっています。

√n=a_n、√(n+1)=b_nとする。
また一般に数列c_nの、c_1からc_kまでの積をp(c_n)と表すこととする。

(1)q_n=p(b_n)/p(a_n)とする。以下の極限値を求めよ。
lim[n→∞] q_n
(2)(1)の極限値をrとする。以下の極限を求めよ。
lim[n→∞] {q_(n+1)-r}/{q_n-r}

307 132人目の素数さん 2017/09/05(火) 00:33:31 ID:
問題文は正しく写しましょう

308 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:40:09 ID:

309 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:40:27 ID:

310 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:40:46 ID:

311 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:41:03 ID:

312 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:41:20 ID:

313 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:41:36 ID:

314 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:42:41 ID:

315 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:42:59 ID:

316 132人目の素数さん 2017/09/05(火) 00:43:01 ID:
>>306
また一般に~のところは、c_1からc_kまでの積をp(c_k)と表すこととする。

が正しいです。

317 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:43:15 ID:

318 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:43:33 ID:

319 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:43:57 ID:

320 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:44:14 ID:

321 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:44:30 ID:

322 132人目の素数さん 2017/09/05(火) 00:44:41 ID:
>>316
q_n=√(n+1)なので極限値は∞となります
(2)は問題文が不適切なので解なしです

323 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:44:47 ID:

324 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:45:03 ID:

325 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:45:20 ID:

326 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:45:38 ID:

327 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:45:54 ID:

328 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:46:13 ID:

329 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:46:29 ID:

330 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:46:47 ID:

331 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:47:28 ID:

332 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:47:44 ID:

333 132人目の素数さん 2017/09/05(火) 00:55:05 ID:
>>322
(1)は∞に発散するの?何で?

334 132人目の素数さん 2017/09/05(火) 00:55:50 ID:
>>333
q_nが√(n+1)だからです

335 132人目の素数さん 2017/09/05(火) 00:56:04 ID:
>>322
てか何でq_n=√(n+1)なん?

336 132人目の素数さん 2017/09/05(火) 00:56:25 ID:
>>334
それが本当か計算で示せっていうこと

337 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:56:52 ID:

338 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:57:08 ID:

339 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:57:24 ID:

340 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:57:40 ID:

341 132人目の素数さん 2017/09/05(火) 00:57:53 ID:
>>334
あー分かったわ
お疲れー

342 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:57:56 ID:

343 132人目の素数さん 2017/09/05(火) 00:57:59 ID:
>>335
あなたが問題文を書き間違えているからです

344 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:58:12 ID:

345 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:59:01 ID:

346 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:59:19 ID:

347 ¥ ◆2VB8wsVUoo 2017/09/05(火) 00:59:33 ID:

348 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:00:19 ID:

349 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:00:36 ID:

350 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:00:53 ID:

351 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:01:07 ID:

352 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:01:48 ID:

353 ¥ ◆2VB8wsVUoo 2017/09/05(火) 01:02:06 ID:

354 132人目の素数さん 2017/09/05(火) 04:19:35 ID:
簡単な問題ですいません

(xlogr+1)r^x=0
これをxについて求めたとき
x=ー1/logr
になるそうなのですが解き方がわかりません

お願いしますm(_ _)m

355 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:28:28 ID:

356 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:28:45 ID:

357 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:29:01 ID:

358 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:29:18 ID:

359 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:29:33 ID:

360 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:29:48 ID:

361 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:30:05 ID:

362 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:30:22 ID:

363 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:30:41 ID:

364 ¥ ◆2VB8wsVUoo 2017/09/05(火) 04:30:58 ID:

365 132人目の素数さん 2017/09/05(火) 08:15:17 ID:
>>354
x log(r) + 1 = 0 or r^x = 0
The latter is false because r > 0,
and x = -1/log(r)

366 132人目の素数さん 2017/09/05(火) 09:31:00 ID:
a, b, c > 0で、互いに素な3つの自然数による組(a, b, c)って、素数なんでしょうか?
互いに素なので、(1, 1, 1)を素因数に持って、(1, 1, 1) * (x, y, z) = (x, y, z) = (a, b, c).
よって、(a, b, c)は1と自分のみを約数に持つ素数っぽいので(この示し方が適当です)。

こうなると、素数を自然数の組で解析している事になりますが、
互いに素って概念は、そんなに凄い物なんですか?

367 132人目の素数さん 2017/09/05(火) 09:32:14 ID:
×この示し方が適当です
○この示し方は投げやりです

368 132人目の素数さん 2017/09/05(火) 10:07:11 ID:
An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
by William Feller
Link: http://a.co/e0qCus2

↑の本を読んでいます。バースデーパラドクスについてですが、

p

=

(1 - 1/365) * (1 - 2/365) * … * (1 - (r - 1)/365)



1 - (1 + 2 + … + (r - 1)) / 365

という近似式を使っています。

(1 / 365)^2, (1 / 365)^3, …, (1 / 365)^(r-1)

の項を全部無視したものですが、これはどうやったら正当化できるのでしょうか?

いくら (1 / 365)^2 が小さいとはいっても、その係数が大きければ無視できないかと思います。

フェラーさんは非常にいい加減な人ですね。

369 132人目の素数さん 2017/09/05(火) 10:28:25 ID:
(when r≠1)

370 132人目の素数さん 2017/09/05(火) 10:41:00 ID:
rが大きいときには興味がないのでは

371 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:08:05 ID:

372 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:08:27 ID:

373 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:08:44 ID:

374 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:09:01 ID:

375 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:09:18 ID:

376 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:09:35 ID:

377 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:09:52 ID:

378 132人目の素数さん 2017/09/05(火) 11:10:00 ID:
>>366-367に追加
かの組を(a, b, c)-tripleとすると、それをカテゴリ分けできた場合、
素数の性質を突き止めた、と言う解釈で良いでしょうか?
つまりABC予想は、素数の性質についてですよね?

379 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:10:09 ID:

380 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:10:25 ID:

381 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:10:43 ID:

382 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:11:02 ID:

383 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:11:22 ID:

384 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:11:42 ID:

385 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:12:00 ID:

386 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:12:18 ID:

387 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:12:35 ID:

388 ¥ ◆2VB8wsVUoo 2017/09/05(火) 11:12:56 ID:

389 132人目の素数さん 2017/09/05(火) 12:33:50 ID:
接点T

390 ¥ ◆2VB8wsVUoo 2017/09/05(火) 13:28:24 ID:

391 132人目の素数さん 2017/09/05(火) 16:35:21 ID:
「rが小さいのに確率は意外に大きい」という意味でのパラドックスだからな
文脈無視すればどんな近似も意味をなくすわな

392 132人目の素数さん 2017/09/05(火) 17:52:09 ID:
問:
f(x)=2X^3+aX^2+bx は、原点以外の点でX軸に接し、x=-1 で極小値をとる
a,bを求めよ

計算
上の導関数はY'=6X^2+2ax+b
極大値の座標は (?, 0)
極小値の座標は (-1, ?)

1 導関数と座標からaとbの式を出す
極小値の座標 (-1, ?)を導関数に代入すると 0=6-2a+b -> b=2a-6
Y'=6X^2+2ax+2a-6

2 導関数の解を出す
公式にあてはめると  -a±√a^2 - 6(2a-6)/ 6
√の中は a^2 - 6(2a-6) = a^2-12a + 36 = (a-6)^2
-> -a±(a-6)/6= -1, -1/3a +1
X=-1 及び -1/3a +1 である

3 f(x)と座標からaとbを出す
X=-1 というのをf(x) に代入すると
-2+a-(2a-6) これが(?, 0) を通るから 
0 = -2+a-(2a-6) -> 0+2-6=a-2a -> a = 4
b=8-6 =2

しかしこれ間違いっぽいのですが・・・
アドバイスお願いします

393 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:15:44 ID:

394 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:16:01 ID:

395 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:16:18 ID:

396 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:16:36 ID:

397 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:16:53 ID:

398 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:17:09 ID:

399 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:17:25 ID:

400 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:17:40 ID:

401 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:17:59 ID:

402 ¥ ◆2VB8wsVUoo 2017/09/05(火) 18:19:21 ID:

403 132人目の素数さん 2017/09/05(火) 19:25:15 ID:
数学を極限まで究めたい。

404 132人目の素数さん 2017/09/05(火) 19:50:14 ID:
異なる複素数a、b、rが2a^2+b^2+r^2-2ab-2arを満たすとき
a、b、rがxの三次方程式x^3+kx+20(kは実数の定数)の解であるとき、a、b、rおよびkの値を求めよ

これ45分解いても分からなかったのでどうしても答えを知りたいです
解ける方教えて下さい

405 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:23:55 ID:

406 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:24:10 ID:

407 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:24:25 ID:

408 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:24:40 ID:

409 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:25:10 ID:

410 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:25:26 ID:

411 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:25:43 ID:

412 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:25:58 ID:

413 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:26:14 ID:

414 ¥ ◆2VB8wsVUoo 2017/09/05(火) 20:26:30 ID:

415 132人目の素数さん 2017/09/05(火) 20:57:52 ID:
↓この問題の解答をお願いします。


f(x) = x^x (x > 1/e)

とする。

f には、その逆関数 g が存在することを示せ。

g(y) = {log(y) / log(log(y))} * ψ(y)

であり、

ψ(y) → 1(y → ∞)

であるような関数 ψ が存在することを示せ。

416 132人目の素数さん 2017/09/05(火) 20:58:31 ID:
頭は生きてるうちに使えーーーー

417 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:20:50 ID:

418 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:21:06 ID:

419 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:21:22 ID:

420 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:21:40 ID:

421 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:21:55 ID:

422 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:22:10 ID:

423 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:22:26 ID:

424 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:22:42 ID:

425 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:22:59 ID:

426 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:23:16 ID:

427 132人目の素数さん 2017/09/05(火) 21:24:25 ID:
g(y) を十分大きな実数に対して定義された連続関数とする。

g(y) → ∞(y → ∞) とする。

このとき、

f(g(y)) → a(y → ∞) ⇒ f(x) → a(x → ∞)

が成り立つ。

これって成り立ちそうですね。

428 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:49:13 ID:

429 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:49:31 ID:

430 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:49:48 ID:

431 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:50:05 ID:

432 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:50:22 ID:

433 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:50:39 ID:

434 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:50:56 ID:

435 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:51:19 ID:

436 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:51:52 ID:

437 ¥ ◆2VB8wsVUoo 2017/09/05(火) 21:52:11 ID:

438 132人目の素数さん 2017/09/05(火) 22:32:37 ID:
>>392 ちょっとスタンバイモードだったので、考えてみた

「原点以外の点でX軸に接し」→重根を持つ→x=cで重根 と考える。これ、チャートとかに書いてあると思うが、頻出テクだな

(解法)
重根を持つので
f(x)=2x(x-c)^2 と置くことが出来る

f'(x)=2{(x-c)^2+2x(x-c)}
 =2{(x-c)(3x-c)}
x=-1 で極小値をとるから、x=-1 で(x-c)=0 又は (3x-c)=0。つまり、c=-1 又は c=-3
(「(-1-c)(-3-c)=0 から、c=-1 又は c=-3」 と書くのが普通だよ。が、ここでは、ちょっと分かり冗長に易く書いただけでまねしないようにね)

c=-1のとき、f(x)=2x(x+1)^2
これを展開して、f(x)=2x^3+4x^2+2x よって、a=4,b=2 (これはあなたの解の通り。かつ、x=-1 で極小値かつX軸に接する解)

c=-3のとき、f(x)=2x(x+3)^2
これを展開して、f(x)=2x^3+12x^2+18x よって、a=12,b=18 (これは、x=-1 以外(x=-3)でX軸に接する解)

(補足)
1.解は二つ。c=-1とc=-3と。>>392のように、一つだけの解だと減点大だろう。
2.”「原点以外の点でX軸に接し」→重根を持つ→x=cで重根 と考える”ことで、パラメータが1つになる。(a,b)二つで考えるより見通しが良くなるし、解2つも見やすい
  だから、是非この頻出テクはマスターしておくべしだと思うよ

以上

439 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:36:28 ID:

440 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:36:47 ID:

441 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:37:04 ID:

442 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:37:21 ID:

443 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:37:38 ID:

444 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:37:56 ID:

445 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:38:15 ID:

446 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:38:34 ID:

447 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:38:56 ID:

448 ¥ ◆2VB8wsVUoo 2017/09/05(火) 22:39:18 ID:

449 132人目の素数さん 2017/09/06(水) 00:26:26 ID:
>>404
1行目の条件式と2行目の3次方程式が、式になってないんだけど…

450 132人目の素数さん 2017/09/06(水) 00:32:53 ID:
>>438
ご回答ありがとうございまます
ただ、オンラインで答え合わせしたらそれでも不正解っぽいです
正解と解説は明日聞いてきてここに上げます

451 132人目の素数さん 2017/09/06(水) 02:35:27 ID:
>>392 >>438 >>450

x=-1 で極小だから、x>-1 では単調に増加
∴ f(-1)< f(0)= 0,
∴ x=-1 ではx軸に接しない。
∴ x=c<-1 でx軸に接する(極大値0)
計算の結果 c=-3,a=12,b=18


>>404
b+r=-a,br = -20/a を使って bとrを消す。
0 = 2aa +(b+r)2 -2br -2a(b+r)= 5aa + 40/a = 5(a^3+8)/a = 5(a+2)(aa-2a+4)/a,
a=-2 または 1±(√3)i
しかし
k = a(b+r)+ br = -aa -20/a = -(a^3 +20)/a = -12/a
が実数ゆえ aも実数。
a=-2,{b,r}={1+3i, 1-3i},k=6

46分考えてやっと分かった。


>>415

f(x)は連続ゆえ、中間値の定理より、
y ≧(1/e)^(1/e)に対して f(x1)=y となる x1 が存在する。

ところで、log{f(x)}= x・log(x)
を微分すると
1 + log(x) = log(ex)> 0  (← x>1/e)
∴ f(x)は x>1/e で単調に増加。
上記の x1 は1つだけ。x1=g(y) とおく。

452 132人目の素数さん 2017/09/06(水) 03:48:16 ID:
>>194

n =[x/m]

453 132人目の素数さん 2017/09/06(水) 04:04:33 ID:
>>451
ID変わったかも知れませんが>>404です
本当にありがとうございます

454 450 2017/09/06(水) 05:24:34 ID:
>>438
改めて正解見たらそれで正解でした。食い違ってたのは別の問題のせいです
ありがとうございます (- -) ペコシ

455 132人目の素数さん 2017/09/06(水) 05:28:54 ID:
ちなみに問題ってのは
「a=4,b=2 だと間違い」でした
(それだとx = -1 で極小じゃなく極大になるから)

456 132人目の素数さん 2017/09/06(水) 05:33:18 ID:

>>451 に書いてくれてた

重ね重ねありがとうごぞいます

457 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:40:22 ID:

458 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:40:40 ID:

459 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:40:57 ID:

460 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:41:13 ID:

461 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:41:46 ID:

462 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:42:05 ID:

463 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:42:23 ID:

464 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:42:41 ID:

465 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:43:00 ID:

466 ¥ ◆2VB8wsVUoo 2017/09/06(水) 05:43:21 ID:

467 132人目の素数さん 2017/09/06(水) 08:10:55 ID:
全宇宙一頭の良い生命体は、どの程度の知力なのでしょうか?
全宇宙の真理を知っているのでしょうか?

468 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:22:06 ID:

469 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:22:23 ID:

470 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:22:40 ID:

471 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:22:57 ID:

472 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:23:16 ID:

473 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:23:34 ID:

474 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:23:51 ID:

475 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:24:09 ID:

476 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:24:27 ID:

477 ¥ ◆2VB8wsVUoo 2017/09/06(水) 08:24:43 ID:

478 132人目の素数さん 2017/09/06(水) 09:38:17 ID:
>>451>>455-456
438です

すまん、間違ったな(^^
増減表を書かないといけないんだったね(下記)
そういえば、昔「増減表を書け!」とうるさく言われたことを思い出したよ
「増減表」も入試頻出だったね(^^

https://juken-mikata.net/how-to/mathematics/zougenhyou-kyokudai-kyokusyou.html
増減表の書き方と符号の調べ方!一度読めばすぐ書ける! 受験のミカタ 2015.10.9

479 132人目の素数さん 2017/09/06(水) 10:04:38 ID:
>>478 補足

”極値の定義と落とし穴”(下記)なんてあるね
落とし穴にハマらぬようにご用心だな(^^
http://examist.jp/mathematics/differential/kyokuti/
極値から係数決定(極値の定義と落とし穴) 受験の月

480 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:32:56 ID:

481 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:33:15 ID:

482 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:33:33 ID:

483 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:33:51 ID:

484 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:34:10 ID:

485 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:34:27 ID:

486 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:34:47 ID:

487 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:35:06 ID:

488 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:35:22 ID:

489 ¥ ◆2VB8wsVUoo 2017/09/06(水) 10:35:42 ID:

490 132人目の素数さん 2017/09/06(水) 11:56:21 ID:
>>415

>>427

の結果を使えば以下のように証明できますね。

g(y) / {log(y) / log(log(y))}

=

x / {(x*log(x)) / (log(x) + log(log(x)))}

=

{log(x) + log(log(x))} / log(x)

=

1 + log(log(x)) / log(x)



1 (x → ∞)

よって、

>>427

の結果より、

g(y) / {log(y) / log(log(y))} → 1 (y → ∞)

491 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:03:40 ID:

492 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:03:58 ID:

493 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:04:15 ID:

494 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:04:32 ID:

495 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:04:50 ID:

496 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:05:09 ID:

497 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:05:26 ID:

498 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:05:43 ID:

499 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:05:59 ID:

500 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:06:17 ID:

501 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:06:35 ID:

502 132人目の素数さん 2017/09/06(水) 12:06:52 ID:
https://imgur.com/RsCWTim.jpg

↑は、Rami Shakarchiによる解答です。

よく読んでいませんが、これってあっているんですか?

分かりにくそうですよね。

>>490

の解答のほうがすっきりしていて分かりやすいですよね。

503 132人目の素数さん 2017/09/06(水) 12:15:25 ID:
  ../::::::::ソ::::::::: :゛'ヽ、
 ../:::::::-、:::i´i|::|/:::::::::::ヽ
 /::::::,,、ミ"ヽ` "゛ / ::::::ヽ     / ̄ ̄ ̄ ̄\
./::::::==       `-::::::::::ヽ   /         .\
::::::::/.,,,=≡, ,≡=、、 l::::::l   |   // /  |   |
i::::::::l゛.,/・\,!./・\  l:::::::!   \/\/  /ヽ _/
.|`:::| :⌒ノ/.. i\:⌒  .|:::::i     (( -・ )   -・ )) _____
(i ″   ,ィ____.i i   i //      ∧  (・ ・ヽ  //壱//万/|
 ヽ    /  l  .i   i /       人 ` ⌒´  人|三 |っ|≡≡|彡
 ..lヽ ノ `トェェェイヽ、/´      ____)`  ニ イ   ̄y 7 ̄
 ..|、 ヽ  `ー'´ /      /  > |゚・*・・゚/< ̄ /  /
/ ヽ ` "ー-´/、      |  i \| ̄ ̄/ / V  ./

 軍産財閥推進内閣
安倍晋三 北村滋 斎木昭隆 谷内正太郎 世耕弘成 杉山晋輔 安倍昭恵

月刊 AKIE
https://dl1.getuploader.com/g/neroma002/183/AKIE.jpg

504 132人目の素数さん 2017/09/06(水) 12:17:50 ID:
>>502

今、↑のRami Shakarchiによる解答を読んでみましたが、やっていることは

>>490

と同じですね。

ただし、これじゃ、0点ですよね。

>>427

の結果を暗黙に使っているわけですから。

505 132人目の素数さん 2017/09/06(水) 12:24:45 ID:
>>467
真理なぞ存在しない

506 132人目の素数さん 2017/09/06(水) 12:45:45 ID:
真理なぞ存在しないという真理

507 132人目の素数さん 2017/09/06(水) 12:49:38 ID:
馬鹿が自分を慰める言葉

508 132人目の素数さん 2017/09/06(水) 12:54:02 ID:
哲学を理解できない馬鹿が、数学や物理に逃げるというのは本当ですか?

509 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:58:21 ID:

510 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:58:40 ID:

511 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:58:57 ID:

512 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:59:15 ID:

513 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:59:33 ID:

514 ¥ ◆2VB8wsVUoo 2017/09/06(水) 12:59:50 ID:

515 ¥ ◆2VB8wsVUoo 2017/09/06(水) 13:00:08 ID:

516 ¥ ◆2VB8wsVUoo 2017/09/06(水) 13:00:24 ID:

517 ¥ ◆2VB8wsVUoo 2017/09/06(水) 13:00:44 ID:

518 ¥ ◆2VB8wsVUoo 2017/09/06(水) 13:01:02 ID:

519 132人目の素数さん 2017/09/06(水) 13:02:44 ID:
文転して哲学の教授になった人はいても、その逆はいないんだよなあ

520 ¥ ◆2VB8wsVUoo 2017/09/06(水) 13:25:31 ID:

521 132人目の素数さん 2017/09/06(水) 14:07:38 ID:
>>502
合ってるも何も
本質的に同じじゃないの?

…よく見てはないけどさ

同じだとしたら
本の方がすっきりしてるな。
アンタのはちょっと粘っこい。

522 132人目の素数さん 2017/09/06(水) 14:08:28 ID:
>>504
そんなの普通に使うでしょ。
自明だもの。
馬鹿じゃないの?

523 132人目の素数さん 2017/09/06(水) 14:10:56 ID:
>>522

>>427

を証明してください。

524 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:30:59 ID:

525 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:31:17 ID:

526 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:31:34 ID:

527 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:31:52 ID:

528 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:32:08 ID:

529 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:32:25 ID:

530 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:32:43 ID:

531 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:33:03 ID:

532 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:33:21 ID:

533 ¥ ◆2VB8wsVUoo 2017/09/06(水) 14:33:41 ID:

534 132人目の素数さん 2017/09/06(水) 15:23:40 ID:
アインシュタインとガウスはどっちの方が頭いいの?

535 ¥ ◆2VB8wsVUoo 2017/09/06(水) 15:29:10 ID:

536 132人目の素数さん 2017/09/06(水) 18:19:07 ID:
日本人は全員ゴミ

537 ¥ ◆2VB8wsVUoo 2017/09/06(水) 19:22:05 ID:

538 132人目の素数さん 2017/09/06(水) 21:33:12 ID:
y→∞ のとき g(y)→∞
かつ y→∞ のとき f(g(y))→∞

が成り立つとき、仮に

x→∞ のとき f(x)→∞でない

としたら、実際に y→∞ のときに
何が起こるんだ!?

539 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:35:25 ID:

540 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:35:44 ID:

541 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:36:02 ID:

542 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:36:22 ID:

543 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:36:40 ID:

544 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:36:58 ID:

545 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:37:17 ID:

546 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:37:36 ID:

547 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:37:55 ID:

548 ¥ ◆2VB8wsVUoo 2017/09/06(水) 21:38:14 ID:

549 132人目の素数さん 2017/09/07(木) 04:11:34 ID:
無限大の空間に、無限大のロボットがあったらどんな感じになりますか?
また、そのロボットが、無限の速度で走ったり無限の高さをジャンプしたりしたらどうなりますか?

550 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:24:07 ID:

551 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:24:25 ID:

552 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:24:42 ID:

553 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:25:00 ID:

554 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:25:18 ID:

555 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:25:35 ID:

556 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:25:53 ID:

557 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:26:11 ID:

558 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:26:28 ID:

559 ¥ ◆2VB8wsVUoo 2017/09/07(木) 04:26:47 ID:

560 132人目の素数さん 2017/09/07(木) 06:55:41 ID:
チミに胸キュン

561 132人目の素数さん 2017/09/07(木) 07:11:08 ID:
こんな風に次々に円を作るときn番目の円はどうなりますか?
一番外側のは単位円の上半分です
ほかの要素は図から判断して下さい
言葉で説明するのはややこしいので

562 ¥ ◆2VB8wsVUoo 2017/09/07(木) 07:20:18 ID:

563 132人目の素数さん 2017/09/07(木) 08:00:14 ID:
日本の「哲学」は西洋哲学の焼き直し、「哲学者」なんて思想史学者か論理学者か宗教学者の間違い
事実、日本の哲学が世界に影響を及ぼしたことがあるか?(京都学派がそれに近いかもしれないが)

564 132人目の素数さん 2017/09/07(木) 08:05:41 ID:
>>561
3番目以降の円はどう定義してるの?

565 132人目の素数さん 2017/09/07(木) 08:12:16 ID:
コギトエルゴスムと100回唱えるのじゃ。さすれば、答えはおのずとあきらかになる。

566 132人目の素数さん 2017/09/07(木) 08:19:17 ID:
>>561
半径は大きい順に1/2,1/4,1/6,1/30…

アポロニウスのギャスケット
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%9D%E3%83%AD%E3%83%8B%E3%82%A6%E3%82%B9%E3%81%AE%E3%82%AE%E3%83%A3%E3%82%B9%E3%82%B1%E3%83%83%E3%83%88
の「曲率」に図がある

567 ¥ ◆2VB8wsVUoo 2017/09/07(木) 08:34:47 ID:
Je pense donc je suis.


568 132人目の素数さん 2017/09/07(木) 08:57:23 ID:
>>564
一番下に2つある円と、最後に書いた円に外接するように

569 132人目の素数さん 2017/09/07(木) 09:02:08 ID:
n番目というのは縦に並ぶ円列だけ考えて下さい
図であれば3番目まで書かれたことになります
この3つを除いた3つの半円は最初からあるものです

570 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:02:22 ID:

571 132人目の素数さん 2017/09/07(木) 09:06:21 ID:
>>568,569

>>566

572 132人目の素数さん 2017/09/07(木) 09:08:51 ID:
>>571
数列の問題のようにして出来ますか?
半径をr_nとするか中心y座標y_nとおく、みたいな解法です
それで簡単には解析できないことを知りたいのです
というのもこれを複素数反転を利用して簡単に解けるのですが、普通にやって解けても面白くないというわけです

573 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:11:35 ID:

574 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:11:52 ID:

575 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:12:09 ID:

576 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:12:26 ID:

577 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:12:43 ID:

578 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:13:00 ID:

579 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:13:18 ID:

580 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:13:37 ID:

581 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:13:54 ID:

582 ¥ ◆2VB8wsVUoo 2017/09/07(木) 09:14:12 ID:

583 132人目の素数さん 2017/09/07(木) 10:03:27 ID:
https://imgur.com/8fKcv1N.jpg

↑は杉浦光夫著『解析入門I』です。

赤い線を引いたところを見てください。

完全に間違っていますね。

584 132人目の素数さん 2017/09/07(木) 10:13:59 ID:
だから何?

585 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:16:12 ID:

586 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:16:30 ID:

587 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:16:48 ID:

588 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:17:03 ID:

589 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:17:20 ID:

590 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:17:36 ID:

591 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:17:52 ID:

592 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:18:07 ID:

593 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:18:23 ID:

594 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:18:40 ID:

595 132人目の素数さん 2017/09/07(木) 10:31:55 ID:
杉浦解析良い本とか言ってなかったっけ?w

596 132人目の素数さん 2017/09/07(木) 10:39:52 ID:
>>427
h(x)=f(1/x)
使えば?

597 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:52:46 ID:

598 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:53:23 ID:

599 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:53:38 ID:

600 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:53:54 ID:

601 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:54:27 ID:

602 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:54:43 ID:

603 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:54:58 ID:

604 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:55:15 ID:

605 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:55:31 ID:

606 ¥ ◆2VB8wsVUoo 2017/09/07(木) 10:55:48 ID:

607 132人目の素数さん 2017/09/07(木) 11:09:25 ID:
書籍の画像をアップロードし続けてるガイジって、著作権法違反でしょっぴけないの?

608 ¥ ◆2VB8wsVUoo 2017/09/07(木) 11:15:38 ID:

609 132人目の素数さん 2017/09/07(木) 11:34:05 ID:
古典的名著に学ぶ微積分の基礎
高瀬 正仁
固定リンク: http://amzn.asia/5FfCweR

↑の本を読んでいます。

高瀬さんは、なぜ、厳密に数学書を書くことに対して、否定的なのでしょうか?

デデキントの切断などの実数の基礎的な部分を軽視しすぎではないでしょうか?

610 132人目の素数さん 2017/09/07(木) 11:36:19 ID:
>>609

それと『解析概論』の全く難しくない箇所を頭では分かるが分かった気がしないなどと
度々書いています。信じられない話です。

そういった箇所は大抵、実数の基礎的な部分が関係する箇所です。

611 132人目の素数さん 2017/09/07(木) 11:41:32 ID:
>>609

それと誤字脱字が多すぎます。

自分が書いたものをもう一度見直すということをしない人なのでしょうか?

p.81に

「あくまでも実数の連続性のひとつの表現として承認された公理であることは
忘られません。」

などという文があります。

高瀬さんは、有名な歌手の影響を受けているのでしょうか?

612 132人目の素数さん 2017/09/07(木) 11:44:15 ID:
実数の基礎的な部分についてですが、高瀬さんは、何度も
「障害は消滅したのではなく、国境に移されたにすぎない」
というポアンカレの言葉を引用しています。

613 ¥ ◆2VB8wsVUoo 2017/09/07(木) 11:59:11 ID:

614 ¥ ◆2VB8wsVUoo 2017/09/07(木) 11:59:31 ID:

615 ¥ ◆2VB8wsVUoo 2017/09/07(木) 11:59:49 ID:

616 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:00:06 ID:

617 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:00:23 ID:

618 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:00:42 ID:

619 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:01:00 ID:

620 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:01:17 ID:

621 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:01:38 ID:

622 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:01:56 ID:

623 132人目の素数さん 2017/09/07(木) 12:13:43 ID:
「全」を微分・積分するとそれぞれどうなりますか?

624 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:20:41 ID:
「板」を焼却・撲滅するとコレコレこうなりますわ。


625 132人目の素数さん 2017/09/07(木) 12:26:07 ID:
PGと書いて、"ペログリ"と読む
これ、マメとして知っといてね

626 132人目の素数さん 2017/09/07(木) 12:37:19 ID:
>>609
何故簡単な微積分の本ばかり読み、難癖を付けることしかできないのですか?

627 132人目の素数さん 2017/09/07(木) 12:52:03 ID:
哲学難しすぎる・・・・・・。
存在と無を読んでるけど一ミリも理解できない・・・・・。

628 132人目の素数さん 2017/09/07(木) 12:57:19 ID:
>>609
おまけに画像を違法アップロードしてるし
https://www.internethotline.jp/
に通報させてもらうね?

629 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:59:38 ID:

630 ¥ ◆2VB8wsVUoo 2017/09/07(木) 12:59:57 ID:

631 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:00:12 ID:

632 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:00:29 ID:

633 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:00:46 ID:

634 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:01:03 ID:

635 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:01:19 ID:

636 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:01:35 ID:

637 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:01:53 ID:

638 ¥ ◆2VB8wsVUoo 2017/09/07(木) 13:02:09 ID:

639 132人目の素数さん 2017/09/07(木) 17:54:43 ID:
>>523
>>538 に何かコメントないの?

640 ¥ ◆2VB8wsVUoo 2017/09/07(木) 17:57:28 ID:

641 132人目の素数さん 2017/09/07(木) 18:12:33 ID:
>>639
この人難癖つけるだけの人だからコミュニケーション取ろうとしても無駄だよ

642 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:02:24 ID:

643 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:02:43 ID:

644 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:02:59 ID:

645 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:03:15 ID:

646 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:03:31 ID:

647 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:03:48 ID:

648 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:04:03 ID:

649 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:04:19 ID:

650 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:04:36 ID:

651 ¥ ◆2VB8wsVUoo 2017/09/07(木) 19:04:51 ID:

652 132人目の素数さん 2017/09/07(木) 22:09:51 ID:
正項2重級数について質問です。

任意の自然数 p, q に対して

0 ≦ a_{p, q}

と仮定します。

任意の自然数 P, Q に対して、

Σ(Σa_{p, q} from p = 1 to p = P) from q = 1 to q = Q



S

となるような実数 S が存在するとき、

Σ(Σa_{p, q} from p = 1 to p = ∞) from q = 1 to q = ∞

は収束することを証明するにはどうすればいいのでしょうか?

本には、 「S は P, Q には関係しないので、収束する」とだけしか書いてありません。

653 132人目の素数さん 2017/09/07(木) 22:10:28 ID:
Σ(Σa_{p, q} from p = 1 to p = P) from q = 1 to q = 1

=

Σa_{p, 1} from p = 1 to p = P



S

であり、単調増加で上に有界な数列は収束するから、

Σa_{p, 1} from p = 1 to p = P

は収束する。


Σ(Σa_{p, q} from p = 1 to p = P) from q = 1 to q = 2

=

Σ a_{p, 1} + a_{p, 2} from p = 1 to p = P



S

であり、単調増加で上に有界な数列は収束するから、

Σ a_{p, 1} + a_{p, 2} from p = 1 to p = P

は収束する。

収束数列の差である

Σa_{p, 2} from p = 1 to p = P

=

Σ a_{p, 1} + a_{p, 2} from p = 1 to p = P

-

Σa_{p, 1} from p = 1 to p = P

も収束する。

654 132人目の素数さん 2017/09/07(木) 22:10:44 ID:
以下同様にして、任意の自然数 Q に対して、

Σa_{p, Q} from p = 1 to p = P

は収束する。


Σ(Σa_{p, q} from p = 1 to p = P) from q = 1 to q = Q



S

だから、

Σ(Σa_{p, q} from p = 1 to p = ∞) from q = 1 to q = Q



S

が任意の自然数 Q に対して成り立つ。

単調増加で上に有界な数列は収束するから、

Σ(Σa_{p, q} from p = 1 to p = ∞) from q = 1 to q = Q

は収束して、

Σ(Σa_{p, q} from p = 1 to p = ∞) from q = 1 to q = ∞



S

655 132人目の素数さん 2017/09/07(木) 22:12:08 ID:
>>653-654

は合っていますか?

もし、合っているとして、

「S は P, Q には関係しないので、収束する」

だけで済ませるのはどうなんでしょうか?

656 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:16:28 ID:

657 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:16:50 ID:

658 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:17:08 ID:

659 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:17:25 ID:

660 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:17:42 ID:

661 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:18:01 ID:

662 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:18:17 ID:

663 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:18:34 ID:

664 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:19:23 ID:

665 ¥ ◆2VB8wsVUoo 2017/09/07(木) 22:19:42 ID:

666 132人目の素数さん 2017/09/07(木) 23:04:05 ID:
無限大の空間に無限大の物体があったらどんな感じになるのでしょうか?
また、無限大の空間で、無限大のロボットが無限の速度で走ったり無限の高さをジャンプしたりしたらどうなるのでしょうか?

667 ファイラム 2017/09/07(木) 23:07:40 ID:
周の長さがamの正三角形の一辺の長さは何センチですか?

次の数量を式で表しなさい
X人のy%

a円のb割

668 132人目の素数さん 2017/09/07(木) 23:26:49 ID:

669 132人目の素数さん 2017/09/07(木) 23:30:24 ID:
>>667
上から順に
a/3(m)
x*y/100(人)
a*b/10(円)

670 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:30:33 ID:

671 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:30:52 ID:

672 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:31:11 ID:

673 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:31:30 ID:

674 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:31:50 ID:

675 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:32:09 ID:

676 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:32:28 ID:

677 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:32:45 ID:

678 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:33:05 ID:

679 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:33:45 ID:

680 132人目の素数さん 2017/09/07(木) 23:49:38 ID:
>>666
無限に広がるユークリッド空間で、あなたは点(0,0,1)にいる。
xy平面には放物線 P:y=x^2+1 のグラフが描かれている。
あなたがy軸の彼方を眺めた時、曲線Pはどのように見えるか? 

681 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:54:10 ID:

682 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:54:26 ID:

683 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:54:41 ID:

684 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:54:57 ID:

685 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:55:13 ID:

686 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:55:28 ID:

687 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:55:44 ID:

688 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:56:00 ID:

689 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:56:15 ID:

690 ¥ ◆2VB8wsVUoo 2017/09/07(木) 23:56:33 ID:

691 132人目の素数さん 2017/09/07(木) 23:58:25 ID:
誰か教えてくださーい٩( ᐛ )و

一個xキログラムの品物三個をyグラムの箱につめたときの全体の重さは何グラムですか?

692 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:20:23 ID:

693 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:20:41 ID:

694 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:20:58 ID:

695 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:21:15 ID:

696 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:21:32 ID:

697 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:21:49 ID:

698 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:22:06 ID:

699 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:22:24 ID:

700 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:22:42 ID:

701 ¥ ◆2VB8wsVUoo 2017/09/08(金) 00:22:59 ID:

702 132人目の素数さん 2017/09/08(金) 00:27:17 ID:
>>691
3000x+y+1000(君の体重)

703 132人目の素数さん 2017/09/08(金) 02:56:15 ID:
>>680
非常に興味深い。
もう少し詳しく教えてくれませんか?

704 132人目の素数さん 2017/09/08(金) 03:17:28 ID:
100a/3 cm
Xy/100 人
ab/10 円
3000x+y g

705 132人目の素数さん 2017/09/08(金) 04:27:49 ID:
>>680 >>703

放物線Pは、円錐C
(1/20)(2y-z+1/2)^2 =(1/5)(y+2z-9/4)^2 + xx,
を xy平面(z=0)で切った断面である。
切り口が放物線 ⇒ y軸に平行な準線をもつ。
また頂点はQ(0,1/4,1)にあり、主軸の向きは、y軸から-z側に arctan(1/2)だけ傾いている。
∴点Qから眺めれば円周(y軸方向の無限遠点を抜いたもの)に見えるはず。

706 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:04:27 ID:

707 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:04:44 ID:

708 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:05:01 ID:

709 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:05:18 ID:

710 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:05:36 ID:

711 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:05:52 ID:

712 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:06:09 ID:

713 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:06:28 ID:

714 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:06:45 ID:

715 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:07:23 ID:

716 132人目の素数さん 2017/09/08(金) 06:53:02 ID:
>>655
{(p, q) | p = 1, 2, 3, ...; q = 1, 2, 3, ...} に
p + q < p' + q'
あるいは (p + q = p' + q' かつ q < q')
ならば (p, q) < (p', q')
として順序を入れれば
この順序に関して Σ a_{p, q} は単調増加で
上から S で抑えられることもすぐ分かるから
収束する

そちらの求めたい和は
2つの上記の順序に基づく和で挟めるから
やっぱり収束する

とすれば手短に示せる

示し方は色々あるが
S が P, Q に依存しないから収束する
というのは事実だし
解析の感覚が備わっている人にとっては自明
なのでその記述で十分だ

ところで

>>523 に対する >>538 を無視し続けるのは
どうしてなのかね?
恥ずかしくて反応できないのか?

717 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:54:04 ID:

718 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:54:21 ID:

719 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:54:38 ID:

720 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:54:55 ID:

721 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:55:13 ID:

722 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:55:30 ID:

723 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:55:46 ID:

724 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:56:02 ID:

725 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:56:18 ID:

726 ¥ ◆2VB8wsVUoo 2017/09/08(金) 06:56:37 ID:

727 132人目の素数さん 2017/09/08(金) 07:25:17 ID:
>>716
横からですが、イプシロンデルタで一行で済む話を、ほぼ質問文と同内容の質問を繰り返すのは、あなたが分かっていないからだと結論せざるを得ません

728 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:50:55 ID:

729 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:51:11 ID:

730 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:51:27 ID:

731 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:51:43 ID:

732 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:51:59 ID:

733 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:52:17 ID:

734 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:52:35 ID:

735 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:52:52 ID:

736 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:53:10 ID:

737 ¥ ◆2VB8wsVUoo 2017/09/08(金) 07:53:28 ID:

738 132人目の素数さん 2017/09/08(金) 13:21:53 ID:
>>716

>そちらの求めたい和は
>2つの上記の順序に基づく和で挟めるから
>やっぱり収束する

↑意味不明です。

任意の自然数 Q に対して、

Σa_{p, Q} from p = 1 to p = P

が収束することをまず示さないといけないと思いますが、
それはどうやって示すのでしょうか?

739 132人目の素数さん 2017/09/08(金) 13:26:35 ID:
Σ(Σa_{p, q} from p = 1 to p = ∞) from q = 1 to q = ∞

が存在することを示すには、

まず、任意の自然数 Q に対して、

Σa_{p, Q} from p = 1 to p = P (P → ∞)

が存在することを示さないといけないですよね。

740 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:27:42 ID:

741 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:27:59 ID:

742 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:28:15 ID:

743 132人目の素数さん 2017/09/08(金) 13:28:19 ID:
「全」と、アメリカ合衆国大統領はどっちの方が凄いですか?

744 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:28:31 ID:

745 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:28:46 ID:

746 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:29:01 ID:

747 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:29:16 ID:

748 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:29:33 ID:

749 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:29:48 ID:

750 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:30:06 ID:

751 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:30:21 ID:

752 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:30:37 ID:

753 ¥ ◆2VB8wsVUoo 2017/09/08(金) 13:30:53 ID:

754 132人目の素数さん 2017/09/08(金) 14:16:21 ID:
>>743
「神」がすごいです

755 ¥ ◆2VB8wsVUoo 2017/09/08(金) 14:34:57 ID:

756 132人目の素数さん 2017/09/08(金) 15:37:54 ID:
>>705 は視点がずれてましたね。スマソ

放物線Pは、楕円錐E
{1/(4√2)}{y-(√2 -1)(z-1)}^2 ={1/(4√2)}{y+(1+√2)(z-1)}^2 + xx,
を xy平面(z=0)で切った切り口でもあります。
(0,0,1)から放物線の底(0,1,0)を見る俯角はy軸からπ/4 なので、
主軸の向きはy軸からπ/8だけ-z側に傾いています。
つまり、(0,0,1)から眺めれば楕円に見えるはず。

757 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:05:01 ID:

758 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:05:20 ID:

759 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:05:38 ID:

760 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:05:55 ID:

761 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:06:12 ID:

762 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:06:32 ID:

763 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:06:52 ID:

764 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:07:08 ID:

765 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:07:27 ID:

766 ¥ ◆2VB8wsVUoo 2017/09/08(金) 16:07:45 ID:

767 132人目の素数さん 2017/09/08(金) 16:53:37 ID:
>>754
「神」でも「全」や「無」には勝てませんよね?

768 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:21:02 ID:

769 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:21:38 ID:

770 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:21:55 ID:

771 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:22:13 ID:

772 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:22:31 ID:

773 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:22:47 ID:

774 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:23:05 ID:

775 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:23:21 ID:

776 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:23:43 ID:

777 ¥ ◆2VB8wsVUoo 2017/09/08(金) 17:24:02 ID:

778 132人目の素数さん 2017/09/08(金) 18:17:46 ID:
>>767
「神」が最強です

779 132人目の素数さん 2017/09/08(金) 18:43:36 ID:
>>778
「神」でも「全」や「無」には勝てません。

780 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:52:58 ID:

781 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:53:17 ID:

782 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:53:32 ID:

783 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:53:49 ID:

784 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:54:04 ID:

785 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:54:42 ID:

786 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:54:57 ID:

787 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:55:12 ID:

788 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:55:28 ID:

789 ¥ ◆2VB8wsVUoo 2017/09/08(金) 18:55:45 ID:

790 132人目の素数さん 2017/09/08(金) 19:59:09 ID:
>>727
1行でお願いします

791 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:06:26 ID:

792 132人目の素数さん 2017/09/08(金) 20:06:45 ID:
>>739
収束するなら絶対収束だから
その限りではない

793 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:14:06 ID:

794 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:14:21 ID:

795 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:14:37 ID:

796 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:14:53 ID:

797 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:15:09 ID:

798 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:15:26 ID:

799 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:15:44 ID:

800 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:16:00 ID:

801 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:16:18 ID:

802 ¥ ◆2VB8wsVUoo 2017/09/08(金) 20:16:35 ID:

803 132人目の素数さん 2017/09/08(金) 21:37:46 ID:
>>727
本人だろwww

804 ¥ ◆2VB8wsVUoo 2017/09/08(金) 21:57:08 ID:

805 132人目の素数さん 2017/09/08(金) 23:05:00 ID:
s.a.t.u.r.d.a.y.night!!
s.a.t.u.r.d.a.y.night!!
s.a.t.u.r.d.a.y.night!!
s.a.t.u.r.d.a.y.night!!
Saturday Night !!!! 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)

806 132人目の素数さん 2017/09/08(金) 23:14:31 ID:
1行でお願いします >> ¥ ◆2VB8wsVUoo 2017/09/08(金) 21:57:08.31ID:6ibQhXIy

807 132人目の素数さん 2017/09/09(土) 01:34:29 ID:
「x=aでf(x)は微分可能でない、x=aでg(x)は微分可能とする。h(x)=f(x)/g(x)とする。
このときx=aでh(x)は微分可能でない」という命題は真でしょうか。
 

808 132人目の素数さん 2017/09/09(土) 01:42:41 ID:
>>807
真。

x=aでh(x)が微分可能と仮定すると、f(x)=g(x)h(x) の右辺はx=aで微分可能となる(積の微分)ので、
f(x)もx=aで微分可能となるが、これは仮定に矛盾する。よって、x=aでh(x)は微分可能でない。

809 132人目の素数さん 2017/09/09(土) 02:30:39 ID:
ありがとうございます!
思考がεδに凝り固まっていました・・・。
背理法による証明鮮やかですね

810 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:53:30 ID:

811 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:53:47 ID:

812 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:54:04 ID:

813 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:54:21 ID:

814 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:54:39 ID:

815 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:54:58 ID:

816 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:55:15 ID:

817 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:55:32 ID:

818 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:55:48 ID:

819 ¥ ◆2VB8wsVUoo 2017/09/09(土) 04:56:05 ID:

820 132人目の素数さん 2017/09/09(土) 09:51:03 ID:
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

821 132人目の素数さん 2017/09/09(土) 09:51:18 ID:
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

822 132人目の素数さん 2017/09/09(土) 09:51:32 ID:
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

823 132人目の素数さん 2017/09/09(土) 09:52:43 ID:
自演がバレた松阪君が荒らしてるよ~

824 ¥ ◆2VB8wsVUoo 2017/09/09(土) 09:52:58 ID:

825 半角350文字 2017/09/09(土) 09:53:06 ID:
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

826 半角360文字 2017/09/09(土) 09:53:53 ID:
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

827 半角370文字 2017/09/09(土) 09:54:22 ID:
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

828 ¥ ◆2VB8wsVUoo 2017/09/09(土) 09:54:40 ID:

829 半角380文字 2017/09/09(土) 09:54:43 ID:
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

830 ¥ ◆2VB8wsVUoo 2017/09/09(土) 09:54:58 ID:

831 半角384文字 2017/09/09(土) 09:55:57 ID:
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234

832 132人目の素数さん 2017/09/09(土) 09:56:49 ID:
1行で半角384文字も書けるようだね
大体の証明が1行

833 全角1文字 ◆2VB8wsVUoo 2017/09/09(土) 09:56:56 ID:

834 132人目の素数さん 2017/09/09(土) 10:06:12 ID:
1行証明のための準備ですかwww

835 132人目の素数さん 2017/09/09(土) 10:08:21 ID:
スマホはおろかpcでさえ画面上では改行
されてると思うが、それでも1行と言い張る
おつもりのようですなwww

836 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:15:38 ID:

837 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:15:55 ID:

838 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:16:10 ID:

839 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:16:27 ID:

840 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:16:43 ID:

841 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:16:58 ID:

842 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:17:16 ID:

843 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:17:33 ID:

844 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:17:49 ID:

845 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:18:05 ID:

846 132人目の素数さん 2017/09/09(土) 10:48:28 ID:
私のディスプレイは53万インチです

847 ¥ ◆2VB8wsVUoo 2017/09/09(土) 10:53:31 ID:

848 132人目の素数さん 2017/09/09(土) 11:34:18 ID:
杉浦光夫著『解析入門I』を読んでいます。

s := Σa_{m, n} from m, n = 0 to m, n = ∞

t := Σ(Σa_{m, n} from n = 0 to n = ∞) from m = 0 to m = ∞

r := Σ(Σa_{m, n} from m = 0 to m = ∞) from n = 0 to n = ∞

a_{m, n} ≧ 0 だからこれらは R∪{±∞} の元として確定する。


と書かれています。


例えば、任意の自然数 k に対して、

Σa_{k, n} from n = 0 to n = ∞

となる場合に、

t := Σ(Σa_{m, n} from n = 0 to n = ∞) from m = 0 to m = ∞

は、

Σ∞ from m = 0 to m = ∞

となってしまいますが、 ∞ 同士の演算は定義されていません、
∞ を無限回足すということも定義されていません。

これは、

∞ + ∞ = ∞

Σ ∞ from m = 0 to m = ∞ = ∞

と解釈するということなんでしょうが、書いていないというのは問題ではないでしょうか?

849 132人目の素数さん 2017/09/09(土) 11:35:26 ID:
訂正します:

杉浦光夫著『解析入門I』を読んでいます。

s := Σa_{m, n} from m, n = 0 to m, n = ∞

t := Σ(Σa_{m, n} from n = 0 to n = ∞) from m = 0 to m = ∞

r := Σ(Σa_{m, n} from m = 0 to m = ∞) from n = 0 to n = ∞

a_{m, n} ≧ 0 だからこれらは R∪{±∞} の元として確定する。


と書かれています。


例えば、任意の自然数 k に対して、

Σa_{k, n} from n = 0 to n = ∞ = ∞

となる場合に、

t := Σ(Σa_{m, n} from n = 0 to n = ∞) from m = 0 to m = ∞

は、

Σ∞ from m = 0 to m = ∞

となってしまいますが、 ∞ 同士の演算は定義されていません、
∞ を無限回足すということも定義されていません。

これは、

∞ + ∞ = ∞

Σ ∞ from m = 0 to m = ∞ = ∞

と解釈するということなんでしょうが、書いていないというのは問題ではないでしょうか?

850 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:39:35 ID:

851 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:39:54 ID:

852 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:40:10 ID:

853 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:40:26 ID:

854 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:40:41 ID:

855 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:40:57 ID:

856 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:41:13 ID:

857 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:41:31 ID:

858 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:41:47 ID:

859 ¥ ◆2VB8wsVUoo 2017/09/09(土) 11:42:05 ID:

860 132人目の素数さん 2017/09/09(土) 13:35:59 ID:
↓買った人いますか?

微分積分
吉田 伸生
固定リンク: http://amzn.asia/0XkBuW9

861 132人目の素数さん 2017/09/09(土) 14:21:12 ID:
そんなことより1行証明早く~www

862 132人目の素数さん 2017/09/09(土) 14:43:25 ID:
わからないんですね(笑)

863 ¥ ◆2VB8wsVUoo 2017/09/09(土) 14:55:59 ID:

864 132人目の素数さん 2017/09/09(土) 15:04:32 ID:
「松阪君=劣等感婆」説は本当なのか!!

865 132人目の素数さん 2017/09/09(土) 15:20:47 ID:
ある監獄にA、B、Cという3人の囚人がいて、それぞ
れ独房に入れられている。罪状はいずれも似たりよっ
たりで、近々3人まとめて処刑される予定になってい
る。ところが恩赦が出て3人のうち1人だけ助かること
になったという。誰が恩赦になるかは明かされておら
ず、それぞれの囚人が「私は助かるのか?」と聞いて
も看守は答えない。
囚人Aは一計を案じ、看守に向かってこう頼んだ。「
私以外の2人のうち少なくとも1人は死刑になるはずだ
。その者の名前が知りたい。私のことじゃないんだか
ら教えてくれてもよいだろう?」すると看守は「Bは死
刑になる」と教えてくれた。それを聞いた囚人Aは「
これで助かる確率が1/3から1/2に上がった」とひそか
に喜んだ。果たして囚人Aが喜んだのは正しいか?

866 132人目の素数さん 2017/09/09(土) 15:27:09 ID:
>>865
P(Ao Bx Cx ∧ B) = 1/3 * 1/2 = 1/6
P(Ax Bx Co ∧ B) = 1/3 * 1 = 2/6
(2/6)/(1/6 + 2/6) = 2/3

867 132人目の素数さん 2017/09/09(土) 15:33:54 ID:
ちなみに
lim[y→∞]g(y)=∞
lim[y→∞]f(g(y))=∞
のとき
lim[x→∞]f(x)≠∞
と仮定すると
g(y)=x とおいて
lim[y→∞]x=∞
lim[y→∞]f(x)=∞
より
lim[x→∞]f(x)=∞
となって矛盾

868 132人目の素数さん 2017/09/09(土) 16:56:54 ID:
唐突に失礼させていただきます
一次不等式の問題に関してなのですが
「x≧-6であるすべてのxに対し、不等式2ax≦6x+1が成り立つような定数aの範囲を求めろ」とのことなのですが
場合分けでa>3の時、不等式2ax≦6x+1の解はx≦1/2a-6、となるのは分かります

問題なのは答えでのこの部分の解説が「a>3の時、2ax≦6x+1の解はx≦1/2a-6。よってx≧-6の範囲に成り立たないxが存在する」と書いてあるのです

a>3の時、aが3に近づけば近づくほど1/2a-6は大きくなりますし、当然、この範囲ではx≦1/2a-6なのでマイナスの値も取りますし
この時にxがとる範囲はx≧-6を満たしているように思います

恐らく私が間違っているのでしょうがどこがおかしいかご教授願います

869 132人目の素数さん 2017/09/09(土) 17:02:05 ID:
>>868
1/(2a-6)は小さくなるんですよ
マイナスですから

x≧-6はプラスの値も取りますから、答えではないですね
あなたの言う場合はマイナスの値しかとらないのですから

870 132人目の素数さん 2017/09/09(土) 17:10:15 ID:
>>869
回答ありがとうございます

しかし、a>3のとき、xの範囲はx≦1/(2a-6)というのをはじめに見たときは私自身もそう思ったのですが

aの値を3.1のとき、3.01の時…等徐々に3に近づけていくと1/(2a-6)の値は上昇していくので上限に限りがなくおかしいなと思いまして

問題ではaは整数である等は書いておりませんし、もっと極端に言えば反例が欲しいのです

871 132人目の素数さん 2017/09/09(土) 17:17:12 ID:
>>870
a>3でしたね

aが近づくにつれて上限に限りがなくても、a一つに対して上限は存在するんです
x≧-6はxに上限がないことを要求しますから、ダメというわけです

872 132人目の素数さん 2017/09/09(土) 17:23:12 ID:
>>868
A=1/(2a-6) はaの値によっては
いくらでも大きくなるが、
Aがいくら大きくてもx≤Aである限り、
x≥-6であるすべてのxまでは収まらない。

例えばx=A+1はx≥-6の範囲にあるが
不等式の解x≤Aには含まれない。

873 132人目の素数さん 2017/09/09(土) 17:25:53 ID:
>>871
なるほど、一つのaに対しては確かに上限は存在しますね、分かりました。

しかし問題ではa>3なので特定の数を表しているわけではなく、上記の数値は誠に勝手ながら私がやりやすいように示したものの流用なので
a>3におけるx≦1/2a-6で表されるxは実質数値に限りがないとなると思うのですが、大変図々しい申し出ですがどこがいけないのかより詳しくお願いします

874 132人目の素数さん 2017/09/09(土) 17:31:35 ID:
>>872
こんな質問に2人も親切な回答者が…感謝します

例えの部分が少し分からなくて申し訳ないのですがですが、要はいくらでも大きい値をとるAがあり
x≦Aの場合、確かにxはどんな値でも取りますが、Aという上限以下という制限があるため当てはまらない数があると処理される、という解釈でよかったでしょうか?

875 132人目の素数さん 2017/09/09(土) 17:33:19 ID:
各定数aに対して不等式の解があって
その解がx≥-6を満たすようにaの値を
決めなさいという問題。

a>3のときはそのaの値に対して
不等式の解はx≤1/(2a-6)であって
解に上限が必ずある。

876 132人目の素数さん 2017/09/09(土) 17:36:33 ID:
>>873
問題文を誤解している気がします

「x≧-6であるすべてのxに対し、不等式2ax≦6x+1が成り立つような定数aの範囲を求めろ」

aを定めるごとに不等式2ax≦6x+1が定まります
この不等式の答えはaの値ごとに異なってくるわけです
このような状況で、x≧-6が不等式の解になる場合のaを全て求めろ

こういう問題です
xについての不等式を考える際は、a自体は固定して考えなければなりません
上の条件を満たすaを全て箇条書きにでもできればいいのですが、それができないので答えはaに関する不等式として表します

877 132人目の素数さん 2017/09/09(土) 17:38:24 ID:
>>875
回答ありがとうございます

つまり、不等式の解x≦1/2a-6では、xは1/2a-6「以下」なのだから
どんな数字が上限になるかは不明だが「以下」という制限がある以上上限が必ずあると処理する、という解釈でよかったのでしょうか?
重ね重ね失礼しますがお願い申し上げます

878 132人目の素数さん 2017/09/09(土) 17:40:34 ID:
>>874
> x≦Aの場合、確かにxはどんな値でも取りますが、

いや、xはA以下の値しかとらない。
どんな値でもとるわけではない。
不等式はあるaの値で解いたもの。

例えばa=3.0001の場合、
不等式の解はx≤5000となるから、
x=5001はx≥-6の範囲にあるにも関わらず
不等式の解ではない。

a=3.00001ならx=500001が、
a=3.000001ならx=5000001が、
a=3.0000001ならx=5000001が、
a=3.0000001ならx=50000001がはみ出る。

879 132人目の素数さん 2017/09/09(土) 17:49:04 ID:
>>878
引用させていただきますが>>876の「a自体は固定して考えなければならない」というところですかね。

つまり、xの不等式を解く際、aはそのまま定数として固定された数字として考えるのであって幾ら大きくなろうと幾らの値をとろうと
解く際にはある一点で固定されているものと考えるために、仮に定められた値としてaは機能するためそれより大きい値を含むことができない
こういう解釈でよかったでしょうか?

880 132人目の素数さん 2017/09/09(土) 18:29:56 ID:
あまり長引かせると別の利用者にも迷惑ですので、誠に勝手ながら切り上げさせていただきます
返答も聞かず自分勝手で自己満足ではありますが、御二方の回答により足りない部分が補われ私は大変納得することが出来ました
回答してくださったID:HtFP9MlYさん、ID:H1c/CZJRさん、ありがとうございました

881 132人目の素数さん 2017/09/09(土) 19:58:13 ID:
z ∈ C
z_n = 1 + z/n

lim |z_n|^2

を求めよ。

この問題を解いてください。

882 132人目の素数さん 2017/09/09(土) 20:12:53 ID:
>>881

解答ですが、以下になります。

z = x + y*i

とおく。

log(1 + t) = t + o(t) (t → 0)

|z_n| = |1 + z/n| = |(1 + x/n) + (y/n)*i| = sqrt(1 + 2*x/n + |z|^2/n^2)

|z_n|^n = sqrt(1 + 2*x/n + |z|^2/n^2)^n = (1 + 2*x/n + |z|^2/n^2)^(n/2)

= exp(n/2 * log(1 + 2*x/n + |z|^2/n^2))

= exp(n/2 * (2*x/n + o(1/n)))

= exp(x + o(1)) → exp(x) = exp(Re(z)) (n → ∞)

883 132人目の素数さん 2017/09/09(土) 20:13:26 ID:
訂正します:

>>881

解答ですが、以下になります。

z = x + y*i

とおく。

log(1 + t) = t + o(t) (t → 0)

を利用する。

|z_n| = |1 + z/n| = |(1 + x/n) + (y/n)*i| = sqrt(1 + 2*x/n + |z|^2/n^2)

|z_n|^n = sqrt(1 + 2*x/n + |z|^2/n^2)^n = (1 + 2*x/n + |z|^2/n^2)^(n/2)

= exp(n/2 * log(1 + 2*x/n + |z|^2/n^2))

= exp(n/2 * (2*x/n + o(1/n)))

= exp(x + o(1)) → exp(x) = exp(Re(z)) (n → ∞)

884 132人目の素数さん 2017/09/09(土) 20:29:27 ID:
自分で出題して自分で解く新しいタイプのガイジ

885 132人目の素数さん 2017/09/09(土) 20:43:06 ID:
>>883

= exp(n/2 * log(1 + 2*x/n + |z|^2/n^2))

= exp(n/2 * (2*x/n + o(1/n)))

↑この式変形ですが、確かに確かめると成り立つ等式です。

でも、

log(1 + t) = t + o(t) (t → 0)

をそのまま利用してはいないですよね。

どういう考えで↑のような式変形をしているのでしょうか?

886 132人目の素数さん 2017/09/09(土) 21:14:32 ID:
log(1 + t) = t + o(t) (t → 0)

より、

log(1 + 2*x/n + |z|^2/n^2)

=

log(1 + 2*x/n + o(1/n))

=

2*x/n + o(1/n) + o(2*x/n + o(1/n)) (n → ∞)


f(n) := o(2*x/n + o(1/n))

とおく。

f(n) / {2*x/n + o(1/n)} → 0 (n → ∞)


x ≠ 0 のとき、

f(n) / (1/n) = [{2*x/n + o(1/n)} / (1/n)] * f(n) / {2*x/n + o(1/n)} → 2*x * 0 = 0 (n → ∞)

x = 0 のとき、

f(n) / (1/n) = {o(1/n) / (1/n)} * f(n) / o(1/n) → 0 * 0 = 0 (n → ∞)

よって、

f(n) = o(1/n)

以上より、

log(1 + 2*x/n + |z|^2/n^2) = 2*x/n + o(1/n) + o(1/n) = 2*x/n + o(1/n)

887 132人目の素数さん 2017/09/09(土) 21:23:03 ID:
>>885
o(t) の意味考えたら判るだろwww
log(1+t)=t+o(t) (t→0) そのものを使ってるよ

888 132人目の素数さん 2017/09/09(土) 21:25:39 ID:
で、1行証明はまだなの?www

>>538に答えたけど反応してくんないの?

889 132人目の素数さん 2017/09/09(土) 21:46:15 ID:
>>865
正しい

890 132人目の素数さん 2017/09/09(土) 21:50:45 ID:
>>887

>>886

のように考えなくては駄目だと思います。

891 132人目の素数さん 2017/09/09(土) 22:11:48 ID:
最近は、エプロン姿は使わないのか?

892 132人目の素数さん 2017/09/09(土) 23:41:26 ID:
Σ[k=0,n](k*C(n,k)^2)ってどうやって解けばいいんでしょうか?
Wolframalphaで計算させると
n*C(2n,n)/2になるらしいです
とりあえず
Σ[k=0,n](k*C(n,k)^2)
=n*Σ[k=1,n](C(n-1,k-1)*C(n,k))
まで式変形しましたがここから手がとまってしまいました
Σ[k=0,n](C(n,k)^2)=C(2n,n)を使えるような形にもっていければいいと思うのですが…

893 132人目の素数さん 2017/09/09(土) 23:59:17 ID:
>>892
母関数かな

894 132人目の素数さん 2017/09/10(日) 00:59:59 ID:
問題ではないのですが、陸上短距離100m走において、低身長より高身長の方が追い風の恩恵が大きいという理屈は成り立ちますか?
空気の状態(高度、湿度、温度などによる)は平均的なものとして、
風速追い風2mで、195cmと175cmが同時に走った場合、追い風の影響に差があるのか、あるならどの程度なのかを
論理的に軽く説明していただきたいです
知りたいのは具体的数値というよりは影響の差の有無です

895 132人目の素数さん 2017/09/10(日) 01:04:02 ID:
同じ身長でもクソガリとクソデブとで違います

896 132人目の素数さん 2017/09/10(日) 01:05:58 ID:
数値的なものでないなら、論理も何も、次の台風の時
背の低い友達と一緒に走ってみればわかるでしょう。
もちろんマイケルソン・モーレーの実験を参考にw

897 132人目の素数さん 2017/09/10(日) 01:13:14 ID:
>>896
背が高い方が恩恵が大きいと言ったら、背が高いと空気抵抗も大きくなるから恩恵は同じと言われました
そんなわけないと思うのです
空気抵抗は無視できるほどに小さいのに対して、追い風は影響が大きいと考えてます
風より速く走る場合だけ恩恵が変わるとかよくわからないことも言われました

数学的に高身長が追い風の恩恵が大きいということの説明が欲しいと思っています

898 132人目の素数さん 2017/09/10(日) 01:15:37 ID:
間違えました
正しくは、風の方が人より速かった場合だけ、です

899 132人目の素数さん 2017/09/10(日) 01:19:58 ID:
>>897
数学ではなく物理の問題なので他の板で聞きましょう
こういう問題は具体的な数値とか調べないといけないので結構めんどくさいんです

900 132人目の素数さん 2017/09/10(日) 01:37:43 ID:
推進力は背中だけで長足は乱流で抵抗がおおきくなるだろう
最初はクラウチングだから関係ないな
スラリとした体型が有利だよな

901 132人目の素数さん 2017/09/10(日) 05:25:46 ID:
>>890
o(t) 初心者で慣れてないだけ。
アンタのチマチマした計算は
暗算で済むんだよwww

902 132人目の素数さん 2017/09/10(日) 05:27:05 ID:
>>890
1行証明と>>538の続きもよろしくwww

903 132人目の素数さん 2017/09/10(日) 07:42:52 ID:
>>892
C(n-1,k-1)*C(n,k) を

横k-1、縦n-kの格子状道路の最短経路の総数と
横n-k、縦kの格子状道路の最短経路の総数との積

と考えれば、k=1,2,3,...,nの和をとることで

横n-1、縦nの格子状道路の最短経路の総数

と一致することがわかる。その最短経路を
n-1ステップ目の位置で場合分けして
足したものと捉える。

だから和は C(2n-1,n)=(2n-1)!/n!/(n-1)!
分子分母に2nをかけて
(2n)!/n!/(2*n!)=C(2n,n)/2

904 132人目の素数さん 2017/09/10(日) 08:08:34 ID:
>>890
親切に教えてやると
o(o(1/n))=o(1/n)なんだよ~
簡単だろwww

905 132人目の素数さん 2017/09/10(日) 08:49:27 ID:
>>892
>Σ[k=0,n](k*C(n,k)^2)
>=n*Σ[k=1,n](C(n-1,k-1)*C(n,k))

から出発する。C(n,k)=C(n,n-k) だから、Σ[k=1,n] C(n-1,k-1)*C(n,n-k) について
考えればよい。

( Σ[k=1,n] C(n-1,k-1)x^{k-1} ) * (Σ[k=1,n] C(n,n-k)x^{n-k} )

を展開したときの x^{n-1} の係数は Σ[k=1,n] C(n-1,k-1)*C(n,n-k) である。一方で、

( Σ[k=1,n] C(n-1,k-1)x^{k-1} ) * (Σ[k=1,n] C(n,n-k)x^{n-k} )

=(1+x)^{n-1} * ((1+x)^n-x^n)=(1+x)^{2n-1}-x^n(1+x)^{n-1}

だから、x^{n-1} の係数は C(2n-1,n-1) である。よって、

Σ[k=1,n] C(n-1,k-1)*C(n,n-k)=C(2n-1,n-1)

となるので、求める答えは n*C(2n-1,n-1) となる。
C(2n,n)=2C(2n-1,n-1) を使えば、求める答えは n*C(2n,n)/2 とも表せる、

906 132人目の素数さん 2017/09/10(日) 09:47:29 ID:
>>881

907 132人目の素数さん 2017/09/10(日) 12:57:22 ID:
>>903
>>905
ありがとうございます。ちょっとC(2n,n)にとらわれすぎていたようです。
Σ[k=0,n](C(n,k)^2)=C(2n,n)と考え方は同じですね

908 132人目の素数さん 2017/09/10(日) 21:38:30 ID:
>>892 蛇足気味ですが、一応アップしておきます

C[n,k](C[n-1,k-1]-C[n-1,k])=C[n,n-k] C[n-1,n-k] - C[n,k] C[n-1,k]
第一項と第二項は、k=1からn-1まで和を取ると、同じ物になるので、
Σ[C[n,k](C[n-1,k-1]-C[n-1,k]),{k=1,n-1}]=0
他方、C[n,k](C[n-1,k-1]-C[n-1,k])=((2k/n)-1)C[n,k]^2 なので、
Σ[k C[n,k]^2,{k=1,n-1}]=(n/2)Σ[C[n,k]^2,{k=1,n-1}]
左辺に 0*C[n,0]^2 + n*C[n,n]^2 = n、右辺に (n/2)C[n,0]^2 + (n/2)C[n,n]^2 =n を加えて
Σ[k C[n,k]^2,{k=0,n}]=(n/2)Σ[C[n,k]^2,{k=0,n}]=(n/2)C[2n,n]

909 132人目の素数さん 2017/09/11(月) 04:17:36 ID:
以下の入試問題(2009早大教育)で、(1)(2)が誘導となってf(n)=(n/2)+f(n/4)を
導かせているのは分かります。
しかし不等式2つから等式を導くという技法は初めて見ました。
この技法は何かの分野ではよく使うものなんでしょうか?大学入学後の参考にした
いので、ご教授ください。
しかしこの問題は(1)からノーヒントでてこずりました。

【問題】正の整数nに対して、集合{1,2,...,n}の部分集合Mで条件
「m∈M ならば 2m∉M」
をみたすものを考える。
このような集合Mに対して、Mの要素の最大数をg(M)とするとき、
g(M)の取りうる最大値をf(n)と表す。

(1)nが4の倍数のとき、f(n)≧(n/2)+f(n/4)が成り立つことを示せ。
(2)nが4の倍数のとき、f(n)≦(n/2)+f(n/4)も成り立つことを示せ。
(3)f(3*2^125)を求めよ。

910 132人目の素数さん 2017/09/11(月) 07:21:06 ID:
>>909

この出題者の日本語能力には問題がありますね。

「M の要素の最大数」というのはあいまいな表現です。

#M の最大値

の意味なのか、

max M

なのかがあいまいです。

911 132人目の素数さん 2017/09/11(月) 07:25:04 ID:
>>909

a = b ⇔ a ≦ b かつ a ≧ b

なので

普通に使われるのではないでしょうか?

A = B ⇔ A ⊂ B かつ A ⊃ B

なんかも似たようなものですよね。

912 132人目の素数さん 2017/09/11(月) 07:30:22 ID:
>>910
お久しぶり~

相変わらず
細かいイチャモンつけるの
得意だねえwww

そんなに言葉に細かいなら
曖昧くらい感じで書いたらいいのにぃ~

913 132人目の素数さん 2017/09/11(月) 07:31:11 ID:
>>912
あ、ゴメンゴメン

「感じ」じゃなくて「漢字」ね!

914 132人目の素数さん 2017/09/11(月) 07:57:25 ID:
>>911
かなりの数の受験問題をこなしましたし、大学の微積分の基本的な本、線形代数の基本的な本には目を通しました。
ですがこのやり方を見たのはこの1回だけで、これがよく登場する方法なのか分かりません。
集合論だと頻繁に使われるのでしょうか?

915 132人目の素数さん 2017/09/11(月) 08:03:52 ID:
>>910
しかし、
集合の要素の(最大)数
つまり「集合の要素の数」と言ったら
前者じゃないかね?

後者だったら「集合の要素の最大値」
とでも表現するところ。

ということは、
日本語能力に問題があるのは、
キミだということになるなwww

916 132人目の素数さん 2017/09/11(月) 08:06:42 ID:
>>914
大学レベルの数学では>>911は頻出テクだよ
数学科で特にかもしれないが
要は、
a = b ⇔ a ≦ b かつ a ≧ b
A = B ⇔ A ⊂ B かつ A ⊃ B
と、右側のように分割して、一つずつ処理する方が、簡単になる場合が多いということ
高校レベルでは、あまり出ないかも知れないが

917 132人目の素数さん 2017/09/11(月) 08:18:47 ID:
たとえば、

{m * z1 + n * z2 | z1, z2 ∈ Z} = {gcd(m, n) * z | z ∈ Z}

を証明するときに、

A ⊂ B かつ A ⊃ B

を示して、

A = B

を示します。

918 132人目の素数さん 2017/09/11(月) 08:22:52 ID:
>>909
無機質に不等式で書かれると
面食らう気持ちはわかります。
でも次の思考に基づくものだと理解すれば、
自然な流れに感じられるのでは?

試行錯誤してとりあえず a 個の例を見つけた
⇔ 少なくとも a 個あることは確認した
⇔ f(M) ≥ a を示した

では f(M) = a を示すにはどうする?

f(M) > a ではないことを示せばよい
⇔ f(M) ≤ a を示せばよい

919 132人目の素数さん 2017/09/11(月) 08:27:02 ID:
f(4)=3のようだから要素数のようだけどMの要素数は一つに決まるから
>Mの要素の最大数をg(M)とするとき
はおかしい。

920 132人目の素数さん 2017/09/11(月) 08:34:01 ID:
>>909

「M の要素の最大数」の意味を #M の最大値と解釈する

とまず宣言して、

M = {n}

は条件を満たすから、

f(n) = n

である。

よって、

n ≧ (n/2) + (n/4) = (3/4)*n は成り立たない。
n ≦ (n/2) + (n/4) = (3/4)*n も成り立たない。

よって、

(1)、(2)は出題ミスである。

(3) f(3*2^125) = 3*2^125

である。

とすれば、簡単に満点をもらえたはずですね。

921 132人目の素数さん 2017/09/11(月) 08:41:23 ID:
訂正します:

>>909

M の要素の最大数 = max M 解釈する

とまず宣言して、

M = {n}

は条件を満たすから、

f(n) = n

である。

よって、

n ≧ (n/2) + (n/4) = (3/4)*n は成り立たない。
n ≦ (n/2) + (n/4) = (3/4)*n も成り立たない。

よって、

(1)、(2)は出題ミスである。

(3) f(3*2^125) = 3*2^125

である。

とすれば、簡単に満点をもらえたはずですね。

922 132人目の素数さん 2017/09/11(月) 08:42:00 ID:
訂正します:

>>909

M の要素の最大数 = max M と解釈する

とまず宣言して、

M = {n}

は条件を満たすから、

f(n) = n

である。

よって、

n ≧ (n/2) + (n/4) = (3/4)*n は成り立たない。
n ≦ (n/2) + (n/4) = (3/4)*n も成り立たない。

よって、

(1)、(2)は出題ミスである。

(3) f(3*2^125) = 3*2^125

である。

とすれば、簡単に満点をもらえたはずですね。

923 132人目の素数さん 2017/09/11(月) 08:48:21 ID:
この人は早稲田ですら受からなそう

924 132人目の素数さん 2017/09/11(月) 08:57:26 ID:
>>919
M={1} も条件を満たす。
M の要素の最大数で問題ない。

925 132人目の素数さん 2017/09/11(月) 09:00:02 ID:
>>922
>>915 の通り。
曲解して答案を書くのは自由www
だが、まったく評価されず零点だな。

926 132人目の素数さん 2017/09/11(月) 09:11:48 ID:
出せる答えに合わせて問題のほうを改変するのは、
実社会では普遍的な「問題解決」の技法だよ。
象牙の塔に浸って、現実から解離してないか?

927 132人目の素数さん 2017/09/11(月) 09:16:08 ID:
>>924
g(M)がそれぞれのM毎に決まるものならMの要素数であって最大という言葉は不要。
g(M)がMを動かしたMの要素数の最大値ならg(M)とf(n)は同じものだから二つ定義する意味がない。

928 132人目の素数さん 2017/09/11(月) 09:26:45 ID:
訂正します:

>>909

M の要素の最大数 = max M と解釈する

とまず宣言して、

M = {n}

は条件を満たすから、

f(n) = n

である。

よって、

(1)

n ≧ (n/2) + (n/4) = (3/4)*n である。

(2)
n ≦ (n/2) + (n/4) = (3/4)*n は成り立たない。

よって、

(2)は出題ミスである。

(3) f(3*2^125) = 3*2^125

である。

とすれば、簡単に満点をもらえたはずですね。

929 132人目の素数さん 2017/09/11(月) 09:37:16 ID:
>>926
それで早稲田受かるの?

930 132人目の素数さん 2017/09/11(月) 10:50:44 ID:
>>914
ユークリッドの互除法の証明をするのに使われたりします
それは、教科書に載ってるはずです

931 132人目の素数さん 2017/09/11(月) 11:27:36 ID:
>>927
これ

932 132人目の素数さん 2017/09/11(月) 11:37:46 ID:
>>927
確かに

933 132人目の素数さん 2017/09/11(月) 11:38:03 ID:
オリジナルの問題を確認した。


正の整数 n に対して、
集合 {1, 2, ..., n} の部分集合 M で条件

m ∈ M ならば 2m ∉ M

をみたすものを考える。
このような集合 M に対して
M の要素の個数を g(M) とするとき、
g(M) の取りうる最大値を f(n) と表す。
次の問に答えよ。


>>909 が誤って書いたのが真実。

934 132人目の素数さん 2017/09/11(月) 11:38:40 ID:
>>909
が問題書き写し間違いしたってことは?

935 132人目の素数さん 2017/09/11(月) 11:39:01 ID:
>>933
やっぱりー

936 132人目の素数さん 2017/09/11(月) 11:43:27 ID:
kを奇数として2^mkと表すとこのラインナップの中ではk,4k,4^2k,,,,を含むのが最大個数ということか

937 132人目の素数さん 2017/09/11(月) 12:20:08 ID:
>>922
書き間違えられた問題に
意気揚々とイチャモンつけて
エヘンと偉ぶる様の滑稽さよwww

938 132人目の素数さん 2017/09/12(火) 11:20:13 ID:
斎藤正彦著『齋藤正彦微分積分学』のp.143命題4.1.11ですが、おかしいですね。

「Σ a_n が和 s に収束すれば、部分和数列 <s_k> は単調増加で、 lim s_k = s だから
有界である。」

などと書いていますが、収束する数列は明らかに有界ですから無駄な記述です。



4.1.11【命題】

正項級数 Σa_n が収束することと、その部分和数列 <s_k> が有界なことは同値である。

【証明】

Σ a_n が和 s に収束すれば、部分和数列 <s_k> は単調増加で、 lim s_k = s だから
有界である。逆に <s_k> が有界なら、それは単調増加だから、定理2.2.4によって収束
する。

939 132人目の素数さん 2017/09/12(火) 12:40:11 ID:
斎藤正彦著『齋藤正彦微分積分学』のp.143命題4.1.13のコーシーの判定法の
証明もおかしいです。

940 132人目の素数さん 2017/09/12(火) 13:05:33 ID:
惨めな奴

941 132人目の素数さん 2017/09/12(火) 13:15:43 ID:
閻魔大王と菩提達磨はどっちの方が凄いですか?

942 132人目の素数さん 2017/09/12(火) 13:34:55 ID:
>>938
何故簡単な微積分の本ばかり読んでいるのですか?

943 132人目の素数さん 2017/09/12(火) 15:08:18 ID:
>>941
ヒマラヤ>>938が教えてくれるぞ

944 132人目の素数さん 2017/09/12(火) 15:09:21 ID:
>>941
神がすごいです

945 132人目の素数さん 2017/09/12(火) 16:21:02 ID:
>>944
「有」=「全」=「無」=「永遠」=「神」

なのでしょうか?

946 132人目の素数さん 2017/09/12(火) 16:37:59 ID:
それは、おいらの財布の中だな。

947 132人目の素数さん 2017/09/12(火) 17:13:16 ID:
斎藤正彦著『齋藤正彦微分積分学』を読んでいます。

p.145 定理4.1.15の記述がひどすぎます。

---------------------------------------------------------------------
4.1.15【定理】

正の範囲で定義された連続関数 f があり、広義単調減少かつ

lim_{x → ∞} f(x) = 0

とする(当然 f(x) ≧ 0)。

このとき、正項級数 Σ f(n) が収束するためには、 +∞ での広義積分

∫ f(x) dx from x =1 to x = +∞

が収束することが必要十分である。
---------------------------------------------------------------------

などと書かれていますが、当然、

lim_{x → ∞} f(x) = 0

という仮定は不要です。

948 132人目の素数さん 2017/09/12(火) 17:20:29 ID:
加えて、

k を自然数として、

lim_{k → ∞} ∫ f(x) dx from x = 1 to x = k が存在すれば、

広義積分

∫ f(x) dx from x = 1 to x = +∞

が存在すると結論していますが、ギャップがありますね。

949 132人目の素数さん 2017/09/12(火) 17:24:27 ID:
>>947
何故簡単な微積分の本ばかり読んでいるのですか?

950 132人目の素数さん 2017/09/12(火) 17:33:38 ID:
>>948
>>727 の後始末をして下さい。
1行証明よろしく~

もちろん >>867 よりも
簡単に示せるんでしょうねwww

951 132人目の素数さん 2017/09/12(火) 18:43:26 ID:
ε‐δ論法の質問です
関数の連続性についてになります

y=f(x)=(2x^2-2)/(x-1)は分母がx-1なので、x≠1になるのですが、
x=1の場合を(ε‐δ論法で)定義すると連続な関数とみなせる
と教科書には書いてあります

言っている意味はわかるのですが
x=1を定義して作ってしまったら、元のy=f(x)=(2x^2-2)/(x-1)
とは別の関数になってしまうと思って
そんなことをしたらいけないように思ってしまって
わからなくなっています
「〇」の場合には特例でやってしまってもよいということでしょうか?

https://i.imgur.com/WSKGPAA.jpg

952 132人目の素数さん 2017/09/12(火) 18:46:06 ID:
>>951
その教科書の該当部分を自分の言葉を使わずにそっくりそのまま書き写すか、写真を貼ってください

953 132人目の素数さん 2017/09/12(火) 18:59:10 ID:
>>952
お待たせしました
該当するページはこちらになります
https://i.imgur.com/JnMKpfW.jpg

954 132人目の素数さん 2017/09/12(火) 19:05:40 ID:
>>953
少々わかりづらいかもしれない書き方ですが

>>951
>x=1の場合を(ε‐δ論法で)定義すると連続な関数とみなせる

(ε‐δ論法で)とは言っていませんね
x=1のときそのように定義をすれば連続となる、とだけ言っています
そして、このような一見すると変な連続性もε‐δ論法を使って証明すること「も」できる、と言っています
高校生風に素朴に考えても十分成り立つことを、ε‐δを使って再確認することができる、と言っています


もちろんそんなことをすればできる関数は異なります
元の関数は連続でないけど、新しくできた関数は連続となるのです

955 132人目の素数さん 2017/09/12(火) 19:15:21 ID:
>>954
返答ありがとうございます
それで少し疑問が出てきたのですが

例えばですけれども三角関数の極限公式に
lim(x→0)sinx/x = 1
というのがありますが
f(x) = sinx/x は本来は0で割れないのでx≠0は定義できずに
不連続になってしまいますが、今まで通り極限を求めて連続する関数として
扱ってしまってもよいということでしょうか?

956 132人目の素数さん 2017/09/12(火) 19:21:09 ID:
∫ sin(x) / x dx from x = 0 to x = ∞

=

π/2

という積分の被積分関数などはそういう扱いだと思います。

957 132人目の素数さん 2017/09/12(火) 19:31:13 ID:
>>956
ありがとうございます
独学でやっているので質問できるところがあると助かります

アップロードした画像についてですが
流石に教科書を1ページそのまま上げたままはマズイと思うので
20:00前後に削除依頼を出すことにします

958 132人目の素数さん 2017/09/12(火) 19:33:09 ID:
>>947
書名紹介から化学系の気持ち悪さを感じる

959 132人目の素数さん 2017/09/12(火) 19:33:28 ID:
>>955
数式は単なる記号であって、それ自体には意味を持たない、ということを意識しましょう

sinx/xは通常、x=0では定義されません
f(x)=sinx/x(x≠0)
1(x=0)
こういう関数なら全てのxで定義されます
もしかしたら、f(x)を定義せずsinx/xがx=0でも定義されているかもしれませんが、その場合はfのことを指しているのだと解釈しましょう

sinx/xの定義域はR¥{0}で、fの定義域はRです
sinx/xはx=0でそもそも定義がされていないのですから、連続となるはずがないのです
sinx/xをfと扱う場合ももしかしたらあるのかもしれませんが、そのときはそのときです
sinx/xの定義によるわけですね

>>956
は広義積分の扱いだと思うので、今回の話は無関係です

960 132人目の素数さん 2017/09/12(火) 19:40:23 ID:
>>959
定義・・・ですか
今までは「0で割ってはいけない」や範囲についての「-π≦θ<π」程度しか
意識してませんでしたが、これからは注意してみることにします

解釈については今の段階ではできるかどうかわからないですが
チャレンジしてみます

丁寧にありがとうございました

961 132人目の素数さん 2017/09/12(火) 20:02:28 ID:
∫ sin(x) / x dx from x = 0 to x = ∞

=

π/2

は普通、

f を

f(x) = sin(x) / x (for x ≠ 0)
f(x) = 0 (for x = 0)

として、

∫ f(x) dx from x = 0 to x = ∞

のことだと考えるのではないでしょうか?

そして、 ∞ のところだけ広義積分と考えるのではないでしょうか?

962 132人目の素数さん 2017/09/12(火) 20:10:29 ID:
>>961
そのように教科書に書いてあったのですか?

963 132人目の素数さん 2017/09/12(火) 20:40:59 ID:
随分と風変わりな普通ですね

964 132人目の素数さん 2017/09/12(火) 20:53:43 ID:
>>961
そんなものが普通なのだとしたら、

f(x) = sin(x) / x (for x ≠ 0)
f(x) = 10000000000 (for x = 0)

としても 

∫ f(x) dx from x = 0 to x = ∞ = π/2

となることはどう説明するおつもりですか??

965 132人目の素数さん 2017/09/12(火) 20:54:56 ID:
↑これが数学板の実力です
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル

966 132人目の素数さん 2017/09/12(火) 21:57:42 ID:
訂正します:

∫ sin(x) / x dx from x = 0 to x = ∞

=

π/2

は普通、

f を

f(x) = sin(x) / x (for x ≠ 0)
f(x) = 1 (for x = 0)

として、

∫ f(x) dx from x = 0 to x = ∞

のことだと考えるのではないでしょうか?

そして、 ∞ のところだけ広義積分と考えるのではないでしょうか?

967 132人目の素数さん 2017/09/12(火) 21:58:27 ID:
あ、

f(x) = sin(x) / x (for x ≠ 0)
x = 0 のときの f(x) の値をどう定義しようが、

x = 0 で広義積分にはなりませんね。

968 132人目の素数さん 2017/09/12(火) 22:09:04 ID:
数学の力に難があるんだから
書かなきゃいいのにwww

969 132人目の素数さん 2017/09/12(火) 22:16:27 ID:
笠原晧司著『微分積分学』

の第3章が無限小解析というタイトルです。

そこで扱われているような内容を扱っている本がきわめて少ないのは
なぜでしょうか?

970 132人目の素数さん 2017/09/12(火) 22:23:26 ID:
龍樹と金日成はどっちの方が凄いですか?

971 132人目の素数さん 2017/09/12(火) 22:33:08 ID:
物理の教科書とか演習書とかに,よく,
f: (-∞, ∞) → (-∞, ∞)で,
1点x = aでf(a) = ∞,他ではf(x) = 0なる関数であって,
∫(-∞, ∞) f(x) dx = 1
となるものが…

とか書いてあることがありますが,そんな関数(超関数を含む)はないと思うんですが,
ぼくは間違っていますか?

972 132人目の素数さん 2017/09/12(火) 22:41:13 ID:
超関数よ

973 132人目の素数さん 2017/09/12(火) 22:43:26 ID:
そんなことで文句言ってたら概念の拡張なんて受け入れられないだろうに

974 132人目の素数さん 2017/09/12(火) 22:50:09 ID:
概念の拡張,とかいう問題ではなく,
「定義」に当てはめると,そんなものは存在しないのでは,と思うのですが

という質問です

975 132人目の素数さん 2017/09/12(火) 22:58:38 ID:
関数という概念の拡張に逆らいたい気持ちがあるからそう見える
もしもここで集合論の教科書に載ってる一般的な用語としての「関数を思い浮かべたのなら、ただの馬鹿だぞ

976 132人目の素数さん 2017/09/12(火) 23:17:49 ID:
超能力が能力でないと同様、超関数は関数ではない。それだけのことだよ。

977 132人目の素数さん 2017/09/13(水) 00:26:16 ID:
存在しませんよ
頭大丈夫?

京大のYI教授もそのネタを授業で使ってました

978 132人目の素数さん 2017/09/13(水) 00:31:19 ID:
>>977
煽ってもダメよ
ちゃんと勉強したらいいだけのこと

979 132人目の素数さん 2017/09/13(水) 00:33:28 ID:
集合論の術語に拘泥していたら解析学における関数と写像のニュアンスの違いも理解できないだろう

980 132人目の素数さん 2017/09/13(水) 00:41:09 ID:
>>974
言葉の定義の及ぶ範囲をいつでもグローバルだと、全数学だと考えるのが間違い
同じ言葉が分野により異なる意味で用いられるのは特別なことではない
集合論には数学の基礎という役割があるから全数学に通用する術語だと勘違いしやすいだけ

981 132人目の素数さん 2017/09/13(水) 00:43:13 ID:
>>978
アナタが勉強したら?
大学レベルは難しいようだから、
義務教育の復習からね

982 132人目の素数さん 2017/09/13(水) 08:27:05 ID:
>>969

杉浦光夫著『解析入門I』の参考文献のところを見てみたら、

ブルバキの本とディユドネの『無限小解析』という本に書いてあるみたいですね。

983 132人目の素数さん 2017/09/13(水) 08:28:17 ID:
>>981
煽り下手ね

984 132人目の素数さん 2017/09/13(水) 08:29:19 ID:
ライプニッツ、ロビンソンとか、

985 132人目の素数さん 2017/09/13(水) 08:30:13 ID:
オイラー・マクローリンの公式を扱っている本が極めて少ないのはなぜでしょうか?

986 132人目の素数さん 2017/09/13(水) 08:32:43 ID:
>>984

笠原さんの本での無限小解析は、ランダウの記号とかの話のことです。

987 132人目の素数さん 2017/09/13(水) 08:54:10 ID:
簡単な微積分の本ばかり読んでいる人には分からないかもしれないですが、扱われていないということは重要でないということなのでは?

988 132人目の素数さん 2017/09/13(水) 09:05:01 ID:
分からない問題はここに書いてね434 [無断転載禁止]©2ch.net
https://2ch.live/cache/view/math/1505261063

989 132人目の素数さん 2017/09/13(水) 10:49:26 ID:
簡単なことはわざわざ扱わない

990 132人目の素数さん 2017/09/13(水) 16:39:57 ID:
ID:i0Sosw+Cは劣等感婆なのでよろしく

991 132人目の素数さん 2017/09/13(水) 16:51:33 ID:
劣等感婆と松坂くんの違いがよくわからんな

992 132人目の素数さん 2017/09/13(水) 19:04:11 ID:
Mathematicaで

Series[Tan[x], {x, 0, 3}]

などと入力すると、出力される

O[x]^4

というような記号の意味を教えてください。

O[x^4] ではなく O[x]^4 と書くのはなぜでしょうか?

993 132人目の素数さん 2017/09/13(水) 19:40:23 ID:
>>991
半年ROMってろ

994 132人目の素数さん 2017/09/13(水) 20:02:45 ID:
>>992
O[x^4]=O[x]^4

995 132人目の素数さん 2017/09/13(水) 20:16:01 ID:
>>993
いやだ

996 132人目の素数さん 2017/09/15(金) 21:11:48 ID:
次スレ 分からない問題はここに書いてね434
https://2ch.live/cache/view/math/1505261063

997 132人目の素数さん 2017/09/15(金) 21:12:39 ID:
次スレ立てたら、できるだけ誘導を書こうね(^^

998 132人目の素数さん 2017/09/15(金) 21:13:34 ID:
あと3つで1000終了か

999 132人目の素数さん 2017/09/15(金) 22:56:28 ID:
999を自然数の和として表す方法は何通りありますか
ただし1+2と2+1は同じと見なします。

1000 132人目の素数さん 2017/09/15(金) 23:25:06 ID:
>>999
分割数でググりましょう

新着レスの表示
レス数が1000を超えています。これ以上書き込みはできません。
■トップページに戻る■ お問い合わせ/削除依頼