分からない問題はここに書いてね431

レス数が1000を超えています。これ以上書き込みはできません。
1 132人目の素数さん 2017/08/15(火) 22:32:08 ID:
さあ、今日も1日頑張ろう★☆

前スレ
分からない問題はここに書いてね430 [無断転載禁止]©2ch.net
https://2ch.live/cache/view/math/1501831825

2 132人目の素数さん 2017/08/15(火) 22:46:30 ID:
ここは分からない問題を書くスレです。
お願いごとをするスレでも分からない問題に答えてもらえるスレでも本の気に入らない箇所を罵倒するスレでもありません。

3 132人目の素数さん 2017/08/15(火) 23:05:32 ID:
削除依頼をお願いします

4 132人目の素数さん 2017/08/15(火) 23:06:56 ID:
等比数列の特性方程式について質問です
どちらかというと考え方の話になりますが

特性方程式は微分方程式の解法を等比数列に使ってみたものなので
関数型等比数列に使われていて

An+1 = pAn + q 
の解がαだとして

An+1 - α = p(An - α)
として解いていってますが

これはやっていることのイメージとしては
 y - α = a(f´(x) - β)
として解いていくのと同じと考えていいのでしょうか?

5 132人目の素数さん 2017/08/16(水) 00:10:24 ID:
http://imgur.com/gSGzbV8.jpg

↑は

微分積分学 (サイエンスライブラリ―数学)
笠原 晧司
固定リンク: http://amzn.asia/3ujEf2L

です。

笠原さんは本当に数学的な文章を書くのが異常に下手ですね。
そのせいで、非常に読みづらくなっています。

↑の赤い線を引いたところを見てください。

添削すると、

「a ∈ A の閉包をとる。a ∈ A なら f(a) は定義されている。」は完全に不要です。

次の

「もし a が A の集積点で a ∈ A でないなら a_n ≠ a, lim a_n = a, a_n ∈ A である点列 {a_n} がとれる。」



「a ∈ A でないなら」が完全に不要です。ですので、以下のように書くべきです:


「a ∈ Aの閉包 - A とする。 a は集積点であるから、 a_n ≠ a, lim a_n = a, a_n ∈ A である点列 {a_n} がとれる。」

「もし a が A の集積点で a ∈ A でないなら a_n ≠ a, lim a_n = a, a_n ∈ A である点列 {a_n} がとれる。」

などと書くと

「a ∈ A でない」ことが、「a_n ≠ a, lim a_n = a, a_n ∈ A である点列 {a_n} がとれる」ための必要条件であるかのように
一瞬思ってしまいます。

笠原さんの本はこのような雑音であふれています。それが読みにくい原因です。

6 132人目の素数さん 2017/08/16(水) 00:13:47 ID:
なぜこんなに文章が下手なのか理解に苦しみます。

読む人のことなど全く考えていないのではないでしょうか?

7 132人目の素数さん 2017/08/16(水) 01:40:24 ID:
点Pと点Qが図形の辺を動く問題で点Aと点Pと点Qがつくる面積を求める問題は相似を使って解けるんですけど、これは点Pだけが動く問題でも使えますか?
この質問にマジレスしたいんですが、まず図形をn角形で定義して...とここからわからないです。この板の方ならできる方いらっしゃるでしょうか

8 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:53:16 ID:

9 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:53:38 ID:

10 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:53:57 ID:

11 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:54:16 ID:

12 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:54:35 ID:

13 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:54:53 ID:

14 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:55:14 ID:

15 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:55:34 ID:

16 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:55:54 ID:

17 ¥ ◆2VB8wsVUoo 2017/08/16(水) 04:56:11 ID:

18 132人目の素数さん 2017/08/16(水) 08:18:41 ID:
http://i.imgur.com/8eJzAmN.jpg
この右辺に中辺をなんで変形できるんですか?

19 ¥ ◆2VB8wsVUoo 2017/08/16(水) 08:19:57 ID:

20 ¥ ◆2VB8wsVUoo 2017/08/16(水) 09:25:44 ID:

21 ¥ ◆2VB8wsVUoo 2017/08/16(水) 10:30:23 ID:

22 132人目の素数さん 2017/08/16(水) 10:58:08 ID:
(1/n)Σ((x_k)-<x>)^2
=(1/n)Σ((x_k)(x_k)-2(x_k)<x>+<x><x>)
=
(1/n)Σ((x_k)(x_k))
-2<x>(1/n)Σ(x_k)
+<x><x>(1/n)Σ1
=
(1/n)Σ((x_k)(x_k))
-2<x><x>
+<x><x>
=
(1/n)Σ((x_k)(x_k))-<x><x>

23 ¥ ◆2VB8wsVUoo 2017/08/16(水) 11:25:10 ID:

24 ¥ ◆2VB8wsVUoo 2017/08/16(水) 12:59:28 ID:

25 ¥ ◆2VB8wsVUoo 2017/08/16(水) 12:59:48 ID:

26 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:00:05 ID:

27 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:00:23 ID:

28 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:00:42 ID:

29 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:01:00 ID:

30 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:01:21 ID:

31 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:01:39 ID:

32 ¥ ◆2VB8wsVUoo 2017/08/16(水) 13:02:02 ID:

33 132人目の素数さん 2017/08/16(水) 13:08:59 ID:
①どんな実数xに対しても、
4x^4 - 2x + 1 > 0が成り立つことを証明せよ。

②どんな正の数a,b,cに対しても、
a+b+c、または、1/a+1/b+1/cの少なくとも一方が3より大きいことを証明せよ。

教えてください

34 132人目の素数さん 2017/08/16(水) 13:20:30 ID:
>>33

(1)

x > 1/2

2*x > 1

4*x^2 > 2*x

4*x^2 + 1 > 2*x

4*x^2 -2*x + 1 > 0

1/2 ≧ x

1 ≧ 2*x

-2*x + 1 ≧ 0

x ≠ 0 のとき、 4*x^2 -2*x + 1 > 0
x = 0 のとき、 4*x^2 -2*x + 1 = 1 > 0
いずれにしても、 4*x^2 -2*x + 1 = 1 > 0

35 132人目の素数さん 2017/08/16(水) 13:21:35 ID:
訂正します:

>>33

(1)

x > 1/2

2*x > 1

4*x^2 > 2*x

4*x^2 + 1 > 2*x

4*x^2 -2*x + 1 > 0

1/2 ≧ x

1 ≧ 2*x

-2*x + 1 ≧ 0

x ≠ 0 のとき、 4*x^2 -2*x + 1 > 0
x = 0 のとき、 4*x^2 -2*x + 1 = 1 > 0
いずれにしても、 4*x^2 -2*x + 1 > 0

36 132人目の素数さん 2017/08/16(水) 13:26:36 ID:
a = b = c = 1

のとき、

a + b + c = 3
1/a + 1/b + 1/c = 3

37 132人目の素数さん 2017/08/16(水) 13:27:31 ID:
>>33

なので

(2)は成り立ちません。

38 132人目の素数さん 2017/08/16(水) 13:31:28 ID:
a=b=c=1

39 132人目の素数さん 2017/08/16(水) 13:34:26 ID:
let f(x) = 4x^4 - 2x + 1.
f'(x) = 16x^3 - 2 = 2(2x - 1)(4x^2 + 2x + 1).
f(x) decreases in x < 1/2, and increases in x > 1/2.
For any real number x, f(x) ≥ f(1/2) = 1/4.


(a + b + c) + (1/a + 1/b + 1/c)
= (a + 1/a) + (b + 1/b) + (c + 1/c)
≥ 2√(a*(1/a)) + 2√(b*(1/b)) + 2√(c*(1/c))
= 6.
This result tells that either (a + b + c) or
(1/a + 1/b + 1/c) is greater than or equal to 3.
If both of them were smaller than 3,
the sum of them would be less than 6.
Note that your proposition is FALSE.
When a = b = c = 1, neither (a + b + c) or
(1/a + 1/b + 1/c) is equal to 3, and not
greater than 3.

40 132人目の素数さん 2017/08/16(水) 13:44:19 ID:
>>39
Can you translate that?
I guess your answer is right,and the Japanese answer that is witten first is wrong.

41 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:05:19 ID:

42 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:05:36 ID:

43 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:05:54 ID:

44 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:06:12 ID:

45 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:06:31 ID:

46 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:06:49 ID:

47 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:07:07 ID:

48 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:07:26 ID:

49 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:07:47 ID:

50 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:08:07 ID:

51 132人目の素数さん 2017/08/16(水) 14:26:45 ID:
>>35
どこを訂正したかぐらい書こうな

52 ¥ ◆2VB8wsVUoo 2017/08/16(水) 14:44:41 ID:

53 132人目の素数さん 2017/08/16(水) 15:33:22 ID:
>>40
Please tell me how you got to speak English.
Are you Japanese ?

54 132人目の素数さん 2017/08/16(水) 15:41:03 ID:
He can read the problem written in Japanese, which means he understands Japanese, you dork!

55 132人目の素数さん 2017/08/16(水) 15:48:14 ID:
>>53
You're not a Japanese,are you?If so,let me know why you could understand the problem written in Japanese.
I was born in America and had lived there for 4 years.(Now I'm in Japan.)That's why I can speak English,but I think most junior high school students in Japan can speak English as well as me.

56 132人目の素数さん 2017/08/16(水) 16:02:35 ID:
Yankee Go Home

57 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:02:36 ID:

58 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:02:56 ID:

59 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:03:13 ID:

60 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:03:30 ID:

61 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:03:47 ID:

62 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:04:04 ID:

63 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:04:21 ID:

64 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:04:39 ID:

65 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:05:01 ID:

66 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:05:20 ID:

67 132人目の素数さん 2017/08/16(水) 16:08:51 ID:
Aのn乗がBを超える時のnの値を知る方法 ( A^n > B の時の n )

あるプログラムで1.1のn乗が2を超える場合を探っています。
高校の数学で底の変換とかを使って出来た記憶がありますがやり方が分かりません。

要は1.1を何回繰り返し掛けたら2を超えるかを知りたいということです。

68 ¥ ◆2VB8wsVUoo 2017/08/16(水) 16:10:51 ID:

69 132人目の素数さん 2017/08/16(水) 16:27:01 ID:
>>3

(1)
4x^4 -2xx + 1/4 ≧ (2xx -1/2)^2 ≧ 0,
2xx -2x + 1/2 = 2(x-1/2)^2 ≧ 0,
辺々たす。
等号は x=1/2,

(2)
(a+b+c)(1/a+1/b+1/c) = 9 + (a/b +b/a -2) + (b/c +c/b -2) + (c/a +a/c -2) > 9
x/y + y/x -2 = (x-y)^2 /xy ≧ 0,
ただし a=b=c を除く。

70 132人目の素数さん 2017/08/16(水) 16:31:35 ID:
When A^n > B > 1 ,
log A^n > log B
⇔ n log A > log B
⇔ n > (logB)/(logA)
(base can be any number larger than one)

71 132人目の素数さん 2017/08/16(水) 16:33:25 ID:
1.1^n>2
だから、両変の対数を取って
n*log(1.1)>log(2)
n>logn(2)/log(1.1)≒0.3010/0.041≒7.3
だから、
n=8
となるのではないでしょうか。

72 132人目の素数さん 2017/08/16(水) 16:37:40 ID:
For example, let A = 1.1 and B = 2,
then A^n > B when n > (log 2)/(log 1.1) = 7.27...
(n is any integer equal to or greater than 8 if we assume n∋N)

73 132人目の素数さん 2017/08/16(水) 16:44:50 ID:
"we" ? You don't have any friends. You will be alone until you die.

74 67 2017/08/16(水) 16:51:35 ID:
>>70-72
有難うございます。
数式だけでなくアルゴリズムで監視するという手もありますね

75 132人目の素数さん 2017/08/16(水) 17:14:54 ID:
Loop n = n + 1 until A^n > B
if you want to do it by programming.

76 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:17:06 ID:

77 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:17:23 ID:

78 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:17:40 ID:

79 132人目の素数さん 2017/08/16(水) 17:17:41 ID:
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q11178092676

この人の答えで藪からスティックにcos5度が出てくる理由わかります?私の理解度が追いつきませんorz

80 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:17:57 ID:

81 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:18:15 ID:

82 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:18:34 ID:

83 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:18:51 ID:

84 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:19:20 ID:

85 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:19:39 ID:

86 132人目の素数さん 2017/08/16(水) 17:19:55 ID:
f_nがn→∞でfに一様収束するとき
∫[0,n] f_n(x)dx=∫ [0,∞] f(x)dx
って成り立ちますか?

87 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:19:56 ID:

88 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:20:16 ID:

89 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:20:34 ID:

90 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:20:49 ID:

91 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:21:05 ID:

92 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:21:21 ID:

93 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:21:37 ID:

94 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:21:53 ID:

95 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:22:10 ID:

96 ¥ ◆2VB8wsVUoo 2017/08/16(水) 17:22:27 ID:

97 132人目の素数さん 2017/08/16(水) 18:47:38 ID:
成り立つはずがない

98 132人目の素数さん 2017/08/16(水) 18:56:00 ID:
ごめんなさい。教えてください。
ある人は、ひとつの壁を塗るのに二時間かかります。
別の人は、ある人と同じ面積のひとつの壁をぬるのに、三時間かかります。
同時に作業を開始すると、何時間何分で塗り終わりますか?

小学校5年生の宿題ですが、回答が分かりません。
式も含めまして、ご丁寧なご回答をいただきたく、宜しくお願い致します。

March文系の母親です。。

99 132人目の素数さん 2017/08/16(水) 19:02:50 ID:
lim n→∞ {(1^3+2^3+…+n^3)(1^4+2^4+…+n^4)}/{(1^2+2^2+…+n^2)(1^5+2^5+…+n^5)} を求めよ

よろしくお願いします

100 132人目の素数さん 2017/08/16(水) 19:09:50 ID:
>>98
式で書くならば、
1/{(1/2)+(1/3)}=1/(5/6)=6/5
だけど、二人が共同で六時間かければ、いくつの壁を塗り終えれるか考えれば簡単。


>>99
与式=lim{(n^4/4+...)*(n^5/5+...)}/{(n^3/3+...)*(n^6/6+...)}=9/10

101 132人目の素数さん 2017/08/16(水) 19:32:10 ID:
>>86
f_n(x)=1/n, f(x)=0 と置くと反例になる

102 99 2017/08/16(水) 20:16:51 ID:
>>100
すみません、何故その式に至るのかを詳しく教えてください

103 132人目の素数さん 2017/08/16(水) 20:37:40 ID:
>>99
(Σ[k=1, n] k^3)(Σ[k=1, n] k^4)
-------------------------------------------
(Σ[k=1, n] k^2)(Σ[k=1, n] k^5)

 ((1/n)Σ[k=1, n] (k/n)^3)((1/n)Σ[k=1, n] (k/n)^4)
= ------------------------------------------------------------------------------
 ((1/n)Σ[k=1, n] (k/n)^2)((1/n)Σ[k=1, n] (k/n)^5)

  (∫[0, 1] x^3 dx)(∫[0, 1] x^4 dx)
→ ------------------------------------------
  (∫[0, 1] x^2 dx)(∫[0, 1] x^5 dx)

= ((1/4)*(1/5))/((1/3)*(1/6)) = 9/10

104 132人目の素数さん 2017/08/16(水) 20:41:34 ID:
>>35
相変わらず間違ってる。
ミスの程度が低すぎる。
他人の著作にどうこういう資格などない。

105 132人目の素数さん 2017/08/16(水) 21:11:39 ID:
100-a/(100-a)+(42-0.315a)+(910-6.83a)=0.071
で、a=60になるらしいんだけど、計算が合わない。計算順教えてください。

106 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:14:34 ID:

107 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:14:53 ID:

108 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:15:10 ID:

109 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:15:27 ID:

110 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:15:44 ID:

111 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:16:01 ID:

112 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:16:18 ID:

113 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:16:34 ID:

114 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:16:53 ID:

115 ¥ ◆2VB8wsVUoo 2017/08/16(水) 21:17:11 ID:

116 132人目の素数さん 2017/08/16(水) 21:47:09 ID:
>>104
>>35のどこが間違ってるのか詳しく



……と思ったら元の問題は4x^4だった
1/2<x<1のときどうすんねん

117 132人目の素数さん 2017/08/16(水) 22:17:49 ID:
>>102

S[k](n)=1+2^k+3^k+...+n^k とすると、 S[k](n) は k+1 次式で、n^(k+1) の係数は 1/(k+1)  *** (☆)
であることを知っていればよい。小さいところでは、
S[1](n)=1+2+3+...+n = n(n+1)/2
S[2](n)=1+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
S[3](n)=1+2^3+3^3+...+n^3={n(n+1)/2}^2
なので、成立していることが判る。

m^(k+1)-(m-1)^(k+1) = m^(k+1) - {m^(k+1) - (k+1)*m^k + (1/2)k(k+1)*m^(k-1) -+ ... + (-1)^(k+1)}
=(k+1)*m^k + ((mの(k-1)次以下の項))
この式において、m=n、m=n-1、...、m=2、m=1としたものの和を取れば、
左辺は、どんどん消し合い、右辺第一項には求めたいものがあらわれ、第二項以下は次数の小さい興味の無い項になり、結局
n^(k+1) = (k+1)*S[k](n) + ((nのk次以下の項))
が得られる。これにより、(☆)が示される。

118 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:28:56 ID:

119 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:29:12 ID:

120 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:29:27 ID:

121 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:29:43 ID:

122 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:30:14 ID:

123 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:30:28 ID:

124 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:30:44 ID:

125 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:31:00 ID:

126 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:31:17 ID:

127 ¥ ◆2VB8wsVUoo 2017/08/16(水) 22:31:34 ID:

128 132人目の素数さん 2017/08/16(水) 22:50:53 ID:
>>33
f(x)=4x^4+2x+1とすると
f'(x)=16x^3+2
∴f'(x)=0⇔x^3=-1/8⇔x=-1/2
よってy=f(x)のグラフの傾きは
x<-1/2で負(右下がり)
x=-1/2で0
x>-1/2で正(右上がり)
f(-1/2)=1/4>0であるからf(x)は常に正

天下り的には
4x^4+2x+1-1/4=…=(2乗の和)≧0
で示せる

129 132人目の素数さん 2017/08/16(水) 22:53:29 ID:
ごめんごめん
問題を読み間違えた

>>33
f(x)=4x^4-2x+1とすると
f'(x)=16x^3-2
∴f'(x)=0⇔x^3=1/8⇔x=1/2
よってy=f(x)のグラフの傾きは
x<1/2で負(右下がり)
x=1/2で0
x>1/2で正(右上がり)
f(1/2)=1/4>0であるからf(x)は常に正

天下り的には
4x^4-2x+1-1/4=…=(2乗の和)≧0
で示せる

130 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:00:43 ID:

131 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:01:01 ID:

132 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:01:17 ID:

133 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:01:37 ID:

134 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:01:53 ID:

135 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:02:08 ID:

136 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:02:27 ID:

137 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:02:46 ID:

138 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:03:05 ID:

139 132人目の素数さん 2017/08/16(水) 23:03:18 ID:
4x^4-2x+3/4
=1/4(16x^4-8x+3)
=1/4((4x^2-1)^2+8x^2-8x+2)
=1/4((4x^2-1)^2+2(2x-1)^2)
=(1/4)(4x^2-1)^2+(1/2)(2x-1)^2
≧0
よって
4x^4-2x+1≧1/4>0

ちょっとずるいけど

140 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:03:25 ID:

141 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:03:48 ID:

142 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:04:07 ID:

143 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:04:26 ID:

144 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:04:44 ID:

145 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:05:00 ID:

146 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:05:19 ID:

147 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:05:37 ID:

148 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:05:53 ID:

149 132人目の素数さん 2017/08/16(水) 23:06:05 ID:
単位円の円周をn等分するn個の点を有限回の四則演算と累乗根だけで求めることは可能ですか?

150 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:06:12 ID:

151 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:06:33 ID:

152 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:06:51 ID:

153 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:07:09 ID:

154 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:07:25 ID:

155 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:07:44 ID:

156 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:08:02 ID:

157 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:08:18 ID:

158 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:08:35 ID:

159 ¥ ◆2VB8wsVUoo 2017/08/16(水) 23:08:53 ID:

160 132人目の素数さん 2017/08/16(水) 23:31:45 ID:
>>149
n個の点の何を求めたいんや
sin(2πk/n)やcos(2πk/n)の値を求めたいんだったら
これらが代数的数かどうかということになるが…

161 132人目の素数さん 2017/08/16(水) 23:34:33 ID:
>>149
円分多項式でググれ

162 132人目の素数さん 2017/08/16(水) 23:59:00 ID:
>>102
>>98です。

ご丁寧に有り難うございました!
1時間12分ですね?

163 99 2017/08/16(水) 23:59:04 ID:
>>103
>>117

ありがとうございました!

164 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:55:14 ID:

165 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:55:30 ID:

166 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:55:46 ID:

167 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:56:04 ID:

168 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:56:20 ID:

169 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:56:36 ID:

170 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:56:51 ID:

171 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:57:08 ID:

172 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:57:27 ID:

173 ¥ ◆2VB8wsVUoo 2017/08/17(木) 01:57:46 ID:

174 132人目の素数さん 2017/08/17(木) 10:11:33 ID:
これの(2)がどう手を付けていいのか分かりません
どなたか教えていただけないでしょうか
できれば(3)も教えていただけると嬉しいです(指針だけでも)
http://i.imgur.com/0SNxmfd.png

175 132人目の素数さん 2017/08/17(木) 11:32:48 ID:

176 ¥ ◆2VB8wsVUoo 2017/08/17(木) 11:36:40 ID:

177 132人目の素数さん 2017/08/17(木) 11:39:50 ID:
>>174

(3)

h(L) ≦ (2/sqrt(g(L)) * g(L) + (sqrt(g(L))/2)*M → 0 (L → ∞)

178 ¥ ◆2VB8wsVUoo 2017/08/17(木) 11:40:12 ID:

179 132人目の素数さん 2017/08/17(木) 11:41:08 ID:
訂正します:

>>174

(3)

h(L) ≦ (2/sqrt(g(L))) * g(L) + (sqrt(g(L))/2)*M → 0 (L → ∞)

180 ¥ ◆2VB8wsVUoo 2017/08/17(木) 12:04:03 ID:

181 132人目の素数さん 2017/08/17(木) 13:30:23 ID:
(2)から(3)を示すのは難しくないだろう

任意のε>0に対してδ=ε/Mとおく
g(L)→0 (L → ∞)だから
あるKが存在してL≧Kならばg(L)≦(ε^2)/(4M)とできる
このときh(L)≦εが成り立つから主張が従う

182 ¥ ◆2VB8wsVUoo 2017/08/17(木) 13:37:57 ID:

183 132人目の素数さん 2017/08/17(木) 13:54:53 ID:
sqrt(g(L))/2) → 0 (L → ∞)の証明は?

184 149 2017/08/17(木) 14:17:20 ID:
>>160-161
円分多項式が代数的に解けるので円周の等分点の位置を求めることも可能、と理解しました。
ありがとうございました><

185 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:20:42 ID:

186 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:21:02 ID:

187 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:21:18 ID:

188 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:21:34 ID:

189 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:21:50 ID:

190 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:22:05 ID:

191 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:22:21 ID:

192 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:22:37 ID:

193 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:22:53 ID:

194 ¥ ◆2VB8wsVUoo 2017/08/17(木) 14:23:09 ID:

195 132人目の素数さん 2017/08/17(木) 15:27:29 ID:
m,nは正の整数でありm(m+1)/2<nを満たしている。ある国にはn個の都市と2つの航空会社XとYがある。各航空会社は都市から別の都市へ直行便をいくつか開設しており、以下のことがわかっている。
・どの都市Cについても都市Cから同じ会社の直行便だけを乗り継いで都市Cに戻ってくることはできない
・どの相異なる2都市についても、いずれか片方からもう片方へ、同じ会社の直行便だけを乗り継いで移動することができる
ただし、都市Cから都市Dへの直行便があったとき、都市Dから都市Cへの直行便があるとは限らない。このとき、ある都市を出発して次の条件を満たすようにm本の直行便を乗り継ぐことができることを示せ。
条件:Yの便の次にXの便に乗ることはない

196 132人目の素数さん 2017/08/17(木) 16:08:24 ID:
http://imgur.com/b2Dz4TH.jpg

↑は、

微分積分学 (サイエンスライブラリ―数学)
笠原 晧司
固定リンク: http://amzn.asia/3ujEf2L

です。

赤い線を引いたところを見てください。
なぜ、 max ではなく sup が使われているのでしょうか?
max と書くべきではないでしょうか?

197 132人目の素数さん 2017/08/17(木) 16:18:39 ID:
三角形OABがある。OAを3:1に内分する点をC、OBを5:2に内分する点をDとおく。
ADとBCの交点をPとする。
AP:PD=s:(1-s)、BP:PC=t:(1-t)とする
この時のsとtの求め方を教えてください

198 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:25:18 ID:

199 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:25:36 ID:

200 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:25:53 ID:

201 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:26:10 ID:

202 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:26:28 ID:

203 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:26:44 ID:

204 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:27:01 ID:

205 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:27:18 ID:

206 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:27:35 ID:

207 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:27:56 ID:

208 132人目の素数さん 2017/08/17(木) 16:44:02 ID:
>>197
ベクトルでもメネラウス・チェバの定理でもできる

P は3点 O,A,B にそれぞれ 2,6,5 の加重があるときの(加重)重心なので
AP:PD = (2+5):6
などと求めることもできる

209 ¥ ◆2VB8wsVUoo 2017/08/17(木) 16:46:24 ID:

210 132人目の素数さん 2017/08/17(木) 18:49:38 ID:
問題の質問ではなく恐縮なのですが、二項係数nCkの性質を学ぶには、どういう分野の数学、どういう本に当たるのがいいですか?
単純に趣味としてです。
高校卒業程度の数学は身についていますが、大学の工学部の方に進むと、二項係数の性質なんて殆ど触らないよ、と線形代数の先生に言われました。
その先生は二項係数については詳しくないとのことです。
よろしくお願いします。

211 132人目の素数さん 2017/08/17(木) 19:04:09 ID:
質問者の特徴

・何もかも分かってるエリート高校生
・ネットや専門書で調べつくして、理解した上で書いてるスーパー頭脳
・何度も諦めずに質問をする努力家


解答者の特徴

・ブサメンの底辺Fラン大生・Fラン大院生
・数学と関係ないニート・無職
・非課税、年金滞納中

212 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:04:31 ID:

213 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:04:50 ID:

214 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:05:07 ID:

215 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:05:26 ID:

216 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:05:43 ID:

217 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:06:30 ID:

218 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:06:57 ID:

219 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:07:17 ID:

220 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:07:37 ID:

221 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:07:57 ID:

222 132人目の素数さん 2017/08/17(木) 19:13:52 ID:
>>210
分野としては組合せ論、離散数学
John Riordan の Combinatorial Identities という250ページほどの本は最初から最後まで二項係数の公式で埋め尽くされている

223 132人目の素数さん 2017/08/17(木) 19:15:31 ID:
この問題も難問で教えてください...
私には全くわからないorz
サイコロを振って出た目だけ正の方向に進むゲームをする。
最初原点0にいる、10に達するか10を越えればゲーム終了
n回目でゲーム終了する確率をP(n)とする。
(1) P(10),P(9)をそれぞれ求めよ。
(2)P(3)を求めよ
(3)偶数の目は正の方向へ、奇数の目は負の方向へ進むとする。
-10を越えるか達する前に10を越えるか達する確率を求めよ。

224 132人目の素数さん 2017/08/17(木) 19:27:06 ID:
>>222
洋書ですか、よくご存知で、すごいですね。数学科の専門の方ですか?
まずは大学の図書館を当たってみます、ありがとうございます!

225 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:33:13 ID:

226 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:33:31 ID:

227 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:33:48 ID:

228 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:34:05 ID:

229 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:34:23 ID:

230 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:34:45 ID:

231 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:35:02 ID:

232 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:35:19 ID:

233 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:35:41 ID:

234 ¥ ◆2VB8wsVUoo 2017/08/17(木) 19:35:59 ID:

235 132人目の素数さん 2017/08/17(木) 20:05:13 ID:
>>223
冷静に考えるとそんなに難問でもないと思うよ
10回目に初めて10以上の位置にいる
⇔9回連続で1ずつ進んで、10回目で任意の数進む、
9回目に初めて10以上の位置にいる
⇔8回連続で1ずつ進んで、9回目に2以上進む
または、8回中1回だけ2だけ進んで、9回目に任意の数進む

P(3)については、3回以下でゲーム終了する確率から
ちょうど2回(最小回数)でゲーム終了する確率を引くのが考えやすい

236 132人目の素数さん 2017/08/17(木) 20:15:52 ID:
>>235
3番はどうでしょう?

237 132人目の素数さん 2017/08/17(木) 20:20:10 ID:
>>235
(1)
P(10)は、1が9回続き最後は何でもよい。
1/6^9 = 1/10077696

P(9)は「1が8回の後、2以上」または、「1が7回と2が1回の後、何でも」
(1/6^8)×(5/6)+(1/6^8)×8C1=37/6^9
=37/10077696

(2)
余事象、3回振って10に達しない=9以内。
先に1ずつ振り分けた後、
6を1回目、2回目、3回目、余りに割り振ると9C3。
このうち、1~3回目に6が割り振られるものは不適で3通り除く。
(6^3-(9C3-3))/6^3=5/8

はわかったのですが...

238 132人目の素数さん 2017/08/17(木) 20:23:46 ID:
>>210

Concrete Mathematics: A Foundation for Computer Science
Ronald L. Knuth, Donald E. Patashnik, Oren Graham
固定リンク: http://amzn.asia/7lUOalr

コンピュータの数学
ロナルド・L. グレアム
固定リンク: http://amzn.asia/9vAoKZY

↑の本は、非常に有名な本だと思いますが、その第5章が「Binomial Coefficients」
というタイトルで100ページちょっとの分量があります。

239 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:32:15 ID:

240 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:32:32 ID:

241 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:32:48 ID:

242 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:33:04 ID:

243 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:33:20 ID:

244 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:33:36 ID:

245 132人目の素数さん 2017/08/17(木) 20:33:37 ID:
>>237
ごめん、これ(1)(2)は飾りみたいなもんなんだね
確かに(3)はムズイわ…

246 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:33:55 ID:

247 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:34:10 ID:

248 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:34:44 ID:

249 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:35:01 ID:

250 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:35:16 ID:

251 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:35:31 ID:

252 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:36:05 ID:

253 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:36:22 ID:

254 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:36:38 ID:

255 ¥ ◆2VB8wsVUoo 2017/08/17(木) 20:36:57 ID:

256 132人目の素数さん 2017/08/17(木) 21:25:37 ID:
>>237
力づくで解く方法なら、
「座標nにいるとき、-10を越えるか達する前に10を越えるか達する確率」を
p_nとでもおいて、19元連立一次方程式を解けばよさそうだけど、
行列の計算がめんどすぎる。(手元に簡易な計算ソフト用意していないもので)

257 132人目の素数さん 2017/08/17(木) 21:39:20 ID:
放物線y=x^2-6x+8をx軸方向に平行移動して点(0,0)を通るようにした放物線の方程式を求めよ

258 132人目の素数さん 2017/08/17(木) 21:51:31 ID:
↑誰か教えてください
夏休みが終わりません

259 132人目の素数さん 2017/08/17(木) 21:55:23 ID:
>>257
夏休みは終わらない方がよろしいのでは?
y=(x-1)^2-1,y=(x+1)^2-1

260 132人目の素数さん 2017/08/17(木) 22:21:31 ID:
>>256
うまいこと漸化式が出ませんorz

261 132人目の素数さん 2017/08/17(木) 22:32:19 ID:
フラットトップ窓関数のフーリエ変換の式(級数近似でなく解析式)を教えていただけますか?
矩形窓、ハニング窓、ハミング窓はすぐ見つかったのですが・・・

あるいはフーリエ変換をやってくれるウェブサイトがあればそれでも結構です

262 132人目の素数さん 2017/08/17(木) 22:39:14 ID:
>>260
P_0=1/6*(P_2+P_4+P_6+P_-1+P_-3+P_-5)
みたいなのを19本作ればいいんじゃない?
両端がめんどくさくなる
P_7=1/6*(P_9+P_6+P_4+P_2)+1/3

263 132人目の素数さん 2017/08/17(木) 23:14:32 ID:
>>262
負側と足してきれいにできないか試行錯誤中という感じです

264 132人目の素数さん 2017/08/17(木) 23:14:37 ID:
複素数z=-3-√3 i について、
z^n (n>1) が複素数平面上zと同一象限にあり、
かつ原点からの距離が30000以上となる最小の自然数nを求めなさい

お願いします

265 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:19:15 ID:

266 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:19:35 ID:

267 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:19:53 ID:

268 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:20:10 ID:

269 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:20:28 ID:

270 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:20:46 ID:

271 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:21:06 ID:

272 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:21:31 ID:

273 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:21:50 ID:

274 ¥ ◆2VB8wsVUoo 2017/08/17(木) 23:22:10 ID:

275 132人目の素数さん 2017/08/17(木) 23:27:33 ID:
>>237

(2)
53/6^9

ではないでしょうか?

276 132人目の素数さん 2017/08/17(木) 23:29:14 ID:
訂正します。

>>237

(1)
P(9) = 53/6^9

ではないでしょうか?

277 132人目の素数さん 2017/08/17(木) 23:29:42 ID:
>>275
おおっとそうでしたね笑

ちなみに(3)わかります?

278 132人目の素数さん 2017/08/17(木) 23:30:15 ID:
>>237

(2)

11/24

ではないでしょうか?

279 132人目の素数さん 2017/08/17(木) 23:34:25 ID:
>>223

(3)

は何回サイコロを振るんですか?

280 132人目の素数さん 2017/08/17(木) 23:37:23 ID:
>>278
え?

その流れで(3)いけます?

281 132人目の素数さん 2017/08/17(木) 23:38:36 ID:
>>279
n回...

282 132人目の素数さん 2017/08/18(金) 00:02:23 ID:
>>280

(2)
余事象、3回振って10に達しない=9以内。
先に1ずつ振り分けた後、
6を1回目、2回目、3回目、余りに割り振ると9C3。
このうち、1~3回目に6が割り振られるものは不適で3通り除く。
(6^3-(9C3-3))/6^3=5/8

↑この日本語が意味不明です。

シミュレーションしてみましたが、 11/24 に近い答えが出ます。
シミュレーション自体間違っている可能性もありますが。。。

283 132人目の素数さん 2017/08/18(金) 00:10:22 ID:
>>261ですが、フラットトップ窓はそもそも定義が級数形式でした
isoとかで決まってるようです
小野測器のサイトには解析的な定義で書いてあったんですが、これはデタラメです
(実際テストコードで確認しました)
ググったらこれがトップにくるので騙された…

284 132人目の素数さん 2017/08/18(金) 00:20:45 ID:
>>281

綺麗な式で表わせるとはとても思えないのですが、どうでしょうか?

285 132人目の素数さん 2017/08/18(金) 00:23:23 ID:
>>237

この問題は誰が出題した問題なのでしょうか?

286 132人目の素数さん 2017/08/18(金) 00:24:06 ID:
訂正します。

>>223

この問題は誰が出題した問題なのでしょうか?

287 132人目の素数さん 2017/08/18(金) 00:26:43 ID:
わからないんですね(笑)

288 132人目の素数さん 2017/08/18(金) 00:33:16 ID:
|z| = 2√3,
z = (2√3)e^{i(7π/6)},
|z|^8 = 12^4 = 20736 < 30000,
|z|^9 = 41472√3 > 30000,
∴ n≧9
z^9 =|z|^9 e^{i(3π/6)},
z^10 =|z|^10 e^{i(-2π/6)},
z^11 =|z|^11 e^{i(5π/6)},
z^12 =|z|^12
z^13 =|z|^12・z
∴ n=13

289 132人目の素数さん 2017/08/18(金) 00:34:48 ID:
>>288>>264 へのレスです。

290 132人目の素数さん 2017/08/18(金) 00:34:58 ID:
>>284
わたしの彼氏です///
ただし答えは知らないらしいですが笑

結構きれいな、とはどういった理由から?

291 132人目の素数さん 2017/08/18(金) 00:39:36 ID:
>>290

(3)の答えは n の関数になりますが、これを綺麗な式で表わせるとはとても思えないということです。

292 132人目の素数さん 2017/08/18(金) 01:10:38 ID:
ちなみに100万回試行してみたところ、
678695回でした。

2/3に近いけどもう少し複雑な値になってそうですね

293 132人目の素数さん 2017/08/18(金) 01:54:58 ID:
>>291
たぶんあなたが考えてる「nの関数」を1から∞まで
足したものを問われてると思うよ ちゃんと問題文読んでるか?

294 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:40:34 ID:

295 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:40:53 ID:

296 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:41:11 ID:

297 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:41:29 ID:

298 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:41:46 ID:

299 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:42:02 ID:

300 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:42:19 ID:

301 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:42:40 ID:

302 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:42:59 ID:

303 ¥ ◆2VB8wsVUoo 2017/08/18(金) 04:43:18 ID:

304 132人目の素数さん 2017/08/18(金) 05:41:26 ID:
100回サイコロふって
負側の崖に落ちる(た)確率:0.32112958...
正側の崖に落ちる(た)確率:0.67887010...
それでも-9~9にいる確率:0.0000003088...
くらい。2.114006倍位、正側に落ちるとおもわれる

305 132人目の素数さん 2017/08/18(金) 06:23:20 ID:
>>304

追試しました。

http://imgur.com/a68Ovcc.jpg

306 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:33:37 ID:

307 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:33:55 ID:

308 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:34:12 ID:

309 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:34:29 ID:

310 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:34:44 ID:

311 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:35:00 ID:

312 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:35:16 ID:

313 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:35:34 ID:

314 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:35:51 ID:

315 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:36:11 ID:

316 132人目の素数さん 2017/08/18(金) 07:36:32 ID:
304は、P[n]=(p[n](-10),p[n](-9),...,p[n](9),p[n](10)) としたとき、
p[n+1](-10)=(1/6)*(P[n],(6,3,2,2,1,1,0,0,...,0))
p[n+1](-9)=(1/6)*(P[n],(0,0,1,0,1,0,1,0,...,0))
...
p[n+1](0)=(1/6)*(P[n],(0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0,0,0))
...
のような漸化式を立てての結果です。
従って、サイコロ100回振ったあと、なお原点にいる確率=p[100](0)=1.38903...*10^70/(6^100) 等と求まっています。
305流のシミュレーションに換算すれば、6^100≒6.53*10^77回の試行に相当するものです。

317 ¥ ◆2VB8wsVUoo 2017/08/18(金) 07:41:25 ID:

318 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:13:08 ID:

319 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:13:24 ID:

320 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:13:40 ID:

321 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:13:56 ID:

322 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:14:13 ID:

323 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:14:29 ID:

324 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:14:46 ID:

325 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:15:02 ID:

326 ¥ ◆2VB8wsVUoo 2017/08/18(金) 08:15:19 ID:

327 132人目の素数さん 2017/08/18(金) 10:38:48 ID:
>>237 >>278

(2)
1,2回目の合計がkである確率 min{k-1,13-k}(1/6)^2,
3回目が 10-k 以上である確率 (k-3)/6

P(3)= 納k=4,9] min{k-1,13-k}・(k-3)(1/6)^3
= 納k=4,6] (k-1)(k-3)(1/6)^3 + 納k=7,9] (13-k)(k-3)(1/6)^3
= 99(1/6)^3
= 11/24,

なお、
P(2)= 納k=10,12] (13-k)(1/6)^2 = 1/6.

328 ¥ ◆2VB8wsVUoo 2017/08/18(金) 10:52:42 ID:

329 132人目の素数さん 2017/08/18(金) 11:14:11 ID:
http://i.imgur.com/kmyKx3C.jpg

5番はどうやったら示せますか?
(テイラーの定理の証明を真似て)ロルの定理を使ったところ、3階微分の係数が-1/8にしかなりませんでした

330 132人目の素数さん 2017/08/18(金) 11:34:31 ID:
>>329

宮岡悦良・永倉安次郎著『解析学I』のp.215の問題ですね。

宮岡悦良・永倉安次郎著『解析演習 一変数関数編』のp.115に詳しい解答が
書いてあります。

331 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:38:26 ID:

332 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:38:46 ID:

333 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:39:04 ID:

334 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:39:22 ID:

335 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:39:40 ID:

336 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:39:58 ID:

337 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:40:15 ID:

338 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:40:32 ID:

339 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:40:51 ID:

340 ¥ ◆2VB8wsVUoo 2017/08/18(金) 11:41:09 ID:

341 132人目の素数さん 2017/08/18(金) 11:45:51 ID:
宮岡悦良・永倉安次郎著『解析学I』

↑の本ですが、いろいろな微分積分の本を見て、機械的にコピペしたような
本に見えますが、どうですか?

342 132人目の素数さん 2017/08/18(金) 12:29:57 ID:
http://imgur.com/knSdUAG.jpg

↑は

微分積分学 (サイエンスライブラリ―数学)
笠原 晧司
固定リンク: http://amzn.asia/3ujEf2L

の問題です。

(ii)の解答をお願いします。

343 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:33:03 ID:

344 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:37:30 ID:

345 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:37:48 ID:

346 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:38:06 ID:

347 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:38:26 ID:

348 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:38:46 ID:

349 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:39:05 ID:

350 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:39:24 ID:

351 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:39:41 ID:

352 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:40:00 ID:

353 132人目の素数さん 2017/08/18(金) 12:53:21 ID:
clickの危険を冒す奴がどれだけいると思ってんだ

354 ¥ ◆2VB8wsVUoo 2017/08/18(金) 12:56:49 ID:

355 132人目の素数さん 2017/08/18(金) 13:24:59 ID:
>>329
テイラーの定理の証明を真似して
g(x)=f(x)-{f(a)+(x-a)f'((a+b)/2)+(x-a)^3 A/24}
とおく(定数Aはg(b)=0となるように決める)
g(a)=g(b)=0だからロールの定理によりg'(ξ)=0となるa<ξ<bが存在する
こうして得られたf'(ξ)=・・・の式と、f'(x)を(a+ξ)/2のまわりで
Taylor展開した式(3次の剰余項を持つ形)とを比べる

356 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:33:17 ID:

357 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:33:34 ID:

358 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:33:51 ID:

359 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:34:07 ID:

360 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:34:23 ID:

361 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:34:37 ID:

362 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:34:53 ID:

363 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:35:08 ID:

364 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:35:26 ID:

365 ¥ ◆2VB8wsVUoo 2017/08/18(金) 13:35:42 ID:

366 132人目の素数さん 2017/08/18(金) 19:09:14 ID:
話変わりますけど
直線や円のベクトル方程式って定義なんですか?

367 132人目の素数さん 2017/08/18(金) 19:16:13 ID:
直線や円のベクトル方程式が定義である、の定義によります

368 132人目の素数さん 2017/08/18(金) 19:17:57 ID:
さっきの問題で
19×19の行列AにたいしてのA^100計算したんですか(^_^;

369 132人目の素数さん 2017/08/18(金) 19:32:09 ID:
f(k, x) = ∫[0, x] √(1 + k^2 sin^t) dt
この関数に名前はありますか?
また、級数展開以外の数値計算方法があれば知りたいです
符号が逆なら楕円積分ですが

370 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:31:26 ID:

371 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:31:42 ID:

372 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:31:58 ID:

373 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:32:13 ID:

374 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:32:28 ID:

375 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:32:43 ID:

376 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:32:59 ID:

377 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:33:16 ID:

378 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:33:31 ID:

379 ¥ ◆2VB8wsVUoo 2017/08/18(金) 20:33:47 ID:

380 132人目の素数さん 2017/08/18(金) 21:19:25 ID:
解き方と解答と解説よろしくお願いします。

0,1,2,3,4,5の6個の数字がある。
異なる数字を用いて4桁の整数を作る。
次のものはそれぞれ何個できるか。

(1)整数(2)奇数(3)3桁目は2と3以外の整数

381 ¥ ◆2VB8wsVUoo 2017/08/18(金) 21:21:43 ID:

382 132人目の素数さん 2017/08/18(金) 21:23:03 ID:
たったの720通りなんだから全部書きだせば

383 132人目の素数さん 2017/08/18(金) 21:27:32 ID:
>>368
崖に落ちたものもカウントしていたので、
19×19じゃなくて21×21ですが、計算していたのは
P[0]=(0,0,...,1,...,0,0)として
P[n+1]=AP[n] によって求まるP[100]です。
初期値を変えて、計算し直すことを後20回繰り返せば
A^100 の成分全てを計算することにはなります。

384 132人目の素数さん 2017/08/18(金) 21:28:45 ID:
>>382

385 132人目の素数さん 2017/08/18(金) 21:40:07 ID:
>>384
作れる数字は、1,2,3,4,5,6,7,8,9,10,11,12,,,,と全部わかっているんですから、神に全部の数字を書いて、条件を満たすものの数を数えればいいですね

386 132人目の素数さん 2017/08/18(金) 21:41:14 ID:
全然違いましたねw
5までで4桁ですね

387 132人目の素数さん 2017/08/18(金) 21:52:31 ID:
>>380の解き方を引き続きお待ちします。
よろしくお願いします。
全部書きだせとの解答以外でお願いします。

388 132人目の素数さん 2017/08/18(金) 21:55:55 ID:
バカのくせになまいきだぞ

389 132人目の素数さん 2017/08/18(金) 22:00:45 ID:
>>388
>たったの720通りなんだから全部書きだせば

こんなレスした人が人に馬鹿と言えるのでしょうか?

390 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:08:22 ID:

391 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:08:39 ID:

392 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:08:55 ID:

393 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:09:13 ID:

394 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:09:30 ID:

395 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:09:46 ID:

396 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:10:02 ID:

397 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:10:19 ID:

398 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:10:35 ID:

399 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:10:57 ID:

400 132人目の素数さん 2017/08/18(金) 22:35:44 ID:
>>235
>>304
>>305
>>316
>>368
>>383

Mathematicaを使って、漸化式を計算する方法で追試しました。

401 132人目の素数さん 2017/08/18(金) 22:36:22 ID:
訂正します:

>>235
>>304
>>305
>>316
>>368
>>383

Mathematicaを使って、漸化式を計算する方法で追試しました。

http://imgur.com/MkwmFdQ.jpg

402 ¥ ◆2VB8wsVUoo 2017/08/18(金) 22:45:29 ID:

403 132人目の素数さん 2017/08/18(金) 22:53:32 ID:
x≧0,y≧0,x+y=2 のとき
f(x,y)=(x-y)|x-a| の最大値を求めよ。

教えてください。。。

404 132人目の素数さん 2017/08/18(金) 23:25:57 ID:
>>380
(1) 千の位は0にならないから5通り、それぞれについて5*4*3通り
よって、300通り

(2) 奇数は1の位が1,3,5の3通り、それぞれについて4*4*3通り
よって、144通り
300/2=150通りはひっかけ

(3)
*0** 5*4*3通り
*1** 4*4*3通り
*4** 4*4*3通り
*5** 4*4*3通り
よって、204通り
300*(2/3)=200通りはひっかけ

「君は引っ掛かるだろうから書き出したほうがいい」という、質問者のレベルを考えたアドバイス

405 132人目の素数さん 2017/08/18(金) 23:38:54 ID:
y=2-x (0≦x≦2)をfに代入
x≧a,x<aで場合分けして平方完成

406 132人目の素数さん 2017/08/18(金) 23:40:02 ID:
>>404
とんんくす

407 132人目の素数さん 2017/08/19(土) 00:11:20 ID:
「分からない問題」っていうか,細木数子の妄想みたいな世界に生きている変態の思考回路についての相談です.

1/3は0.333…と3が続いて,「答えが出ない」と言っている人がいたんですが,
それは「答えが出ない」のではなく,
「1/3は0.333…という無限循環小数になる」というのが「答え」ですよね?
それを「答えが出ない」とか言うのは,細木数子の「1メートルの紐は3等分できない」とかいう(算数レベルの)根本を勘違いしている変質者の思考回路だと思うんですが,いかが思われますか?

408 132人目の素数さん 2017/08/19(土) 00:22:35 ID:
可能無限すら認めない有限主義者でしょうね
何千年前の段階から進歩してないわけです

409 132人目の素数さん 2017/08/19(土) 00:46:14 ID:
>>403

f(x,2-x)= 2(x-1)|x-a| (0≦x≦2)

は x-1 と同符号。最大は 1≦x≦2 にある。

a≦2√2 -1 のとき 2(2-a) (x=2)
2√2 -1 ≦ a ≦ 3 のとき (1/2)(a-1)^2 (x=(a+1)/2)
3 ≦ a のとき 2(a-2)  (x=2)

410 132人目の素数さん 2017/08/19(土) 01:42:11 ID:
>>355
そうすると今度は2階微分の項が消えてくれませんでした

何か見落としてるのか……?

411 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:12:26 ID:

412 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:12:43 ID:

413 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:13:01 ID:

414 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:13:16 ID:

415 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:13:32 ID:

416 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:13:48 ID:

417 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:14:04 ID:

418 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:14:19 ID:

419 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:14:40 ID:

420 ¥ ◆2VB8wsVUoo 2017/08/19(土) 02:14:58 ID:

421 132人目の素数さん 2017/08/19(土) 05:03:08 ID:
微分方程式の解法でyy'=-xからy'=-x/yと変形したりしますが、y=0になるxについては考えなくていいのですか?
このあたりがよくわかりません。0で割ることについて普段は神経質なのに微分方程式になるとそうではなくなるのはなぜですか?

422 132人目の素数さん 2017/08/19(土) 05:35:36 ID:
当然考える
形式的に解を求めたりする場合には考えないが

423 132人目の素数さん 2017/08/19(土) 05:37:42 ID:
ちゃんと「解く」ためには0になる点があるかどうかは考慮する
結果的にないことがわかったりする場合もあるし、範囲や初期値で場合ワケする場合も出てくる

424 132人目の素数さん 2017/08/19(土) 05:59:32 ID:
>>421
この変数分離形の方程式を解くだけなら、
yy'=-x、
y(dy/dx)=-x、
ydy=-xdx、
∫ydy=∫(-x)dx、
y=-x+C Cは定数
で済む。
変数分離形の方程式は、機械的に解ける形で、
y=0 になるxについて考えよというような指示がないなら、
そのようなことは特に考えなくていい。

>0で割ることについて普段は神経質なのに微分方程式になるとそうではなくなるのは>なぜですか?
主に常微分方程式を機械的に解くことだけをするから。
常微分方程式の理論と方程式を解くこととは内容が全く違う。
そういうことをマジメに考え出したら、話がややこしくなることが多い。

425 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:40:13 ID:

426 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:40:28 ID:

427 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:40:47 ID:

428 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:41:03 ID:

429 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:41:20 ID:

430 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:41:37 ID:

431 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:41:55 ID:

432 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:42:15 ID:

433 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:42:33 ID:

434 ¥ ◆2VB8wsVUoo 2017/08/19(土) 06:42:52 ID:

435 132人目の素数さん 2017/08/19(土) 06:48:27 ID:
>>421
ん? >>424には計算間違いがあった。
yy'=-x、
y(dy/dx)=-x、
ydy=-xdx、
∫ydy=∫(-x)dx、
従って、y^2=-x^2+C Cは定数。
ここに、yは実変数xの関数である。
yの定義域(≠∅)はRの部分集合で、yの値域は0以下だから、定数Cは非負値を取り、
与えられた独立変数xの値と従属変数yの値について、y^2=-x^2+C を必ず満たすことになる。

436 132人目の素数さん 2017/08/19(土) 06:55:42 ID:
>>421
>>435について
yの値域は0以下だから → yの値域は R∋0 の全体になり得るから

437 132人目の素数さん 2017/08/19(土) 07:06:50 ID:
工学や物理なら計算だけのことも多いでしょう
しかし数学の授業としてやっているならもちろん、考えなくていいということはなくて
もし何も触れずにやっているのであればあくまで形式計算で公式の形を学ぶという立場でやっているということです
大学、授業によってはもちろんそういったことを考慮して解いたりもします
先生や大学の方針で異なってくるのでしょう
大切なことは、考えなくてもいいのではなく、考えないことにしているだけ、ということです

438 132人目の素数さん 2017/08/19(土) 07:37:42 ID:
「なぜ通分しなきゃいけないのか」 少年が驚きの自由研究
http://news.tbs.co.jp/newseye/tbs_newseye3133446.html
「分数ものさし」11月に商品化

新商品の開発は浜松市西区に住む山本賢一朗くん(12)です。
「なぜ通分しなきゃいけないのか説明できなかった」
山本くんが作ったのは、分数の計算を簡単に解くことができるものさし「分数ものさし」です。

439 132人目の素数さん 2017/08/19(土) 08:42:19 ID:
円分多項式と対応させることで
modpの原始根は
cos(2π/(p-1))+isin(2π/(p-1))(mod p)
と表せることに気付きました
(また、一般化して、nが(p-1)の約数のとき、位数がnの数はcos(2π/n)+isin(2π/n)(mod p)
とも書けることに気付きました)

例を上げると
mod5のとき
cos(2π/(p-1))+isin(2π/(p-1))=cos(π/2)+isin(π/2)=i=√(-1)=2,3=原始根(mod 5)
というような感じです

そこで思ったのですが、cos(2π/(p-1))+isin(2π/(p-1))を解いていくなかで√が出てくると、解は2つに増えます
なので、解が3の倍数のときは3乗根が、解が5の倍数のときは5乗根が必ず出てくるのではないかと予想しました

整理して書くと、
nを自然数、qを素数とする
nと互いに素なn未満の数の個数がmで、mがqの倍数のとき
cos(2π/n)+isin(2π/n)を代数的に書くとq乗根が必ず表れる

という予想です。これが真なのか分からないので、教えて下さると嬉しいです
言葉遣いにおかしいところがあったらすみません

440 132人目の素数さん 2017/08/19(土) 08:49:33 ID:
円分多項式と対応、ではなく、単位円と対応でした。すみません

441 132人目の素数さん 2017/08/19(土) 09:44:16 ID:
すいません。金融のゼミの問題なんですが、
毎年株を積み立てて、毎年4200円ずつ配当が増える場合、30年後には受取配当金の総額がいくらになるかっていう問題はどうやって計算すればいいのでしょうか?

1年目4200円
2年目8400円
3年目12600円
以後同じように続いて

30年目126000円
この配当金の総額を求めなさいと言うことです。

力技で足すしか無いですか?
それとも15年目の金額に30を掛けるのが正解なのか、それとももっと公式のような物があるのでしょうか?

442 132人目の素数さん 2017/08/19(土) 11:24:55 ID:
>>441
等差数列の和の公式で検索

443 132人目の素数さん 2017/08/19(土) 11:53:48 ID:
>>441
(126000 + 4200) * 15

444 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:19:56 ID:

445 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:20:12 ID:

446 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:20:29 ID:

447 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:20:45 ID:

448 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:21:03 ID:

449 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:21:20 ID:

450 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:21:37 ID:

451 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:21:55 ID:

452 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:22:14 ID:

453 ¥ ◆2VB8wsVUoo 2017/08/19(土) 12:22:32 ID:

454 132人目の素数さん 2017/08/19(土) 13:10:43 ID:
>>421
解の関数に特異点が有ってもかまわない
いつも0割り無視ってわけじゃないぞ
解の存在に影響するなら場合分けして特異解を出す

455 132人目の素数さん 2017/08/19(土) 13:22:20 ID:
>>439
n=7,q=3のとにき反例になる気がする

456 132人目の素数さん 2017/08/19(土) 13:29:39 ID:
(n+1)^n+1-n^nは素数になる。
ただしnは自然数とする。
「証明できたら素敵」って彼女に言われた。
誰か素敵になってくれ。

457 132人目の素数さん 2017/08/19(土) 13:39:41 ID:
彼女は

  くせーぞ馬鹿きめえ失せろ死ね、マジで死ね

と言いたかったんだよ

458 132人目の素数さん 2017/08/19(土) 13:51:54 ID:
>>456
反例
n = 4
5^5-4^4 = 3125-256 = 2689 = 19×151

459 132人目の素数さん 2017/08/19(土) 14:17:06 ID:
1/180の確率でBB(大当たり)、1/150の確率でRB(当り)のスロットがある。
この場合BB、RB共に引かない確率はどうなるのですか?
計算方法を教えて下さい。

460 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:24:45 ID:

461 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:25:04 ID:

462 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:25:20 ID:

463 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:25:37 ID:

464 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:25:53 ID:

465 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:26:10 ID:

466 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:26:26 ID:

467 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:26:46 ID:

468 132人目の素数さん 2017/08/19(土) 14:26:58 ID:
>>458 151×19 =2869
おしい

469 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:27:05 ID:

470 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:27:23 ID:

471 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:27:46 ID:

472 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:28:06 ID:

473 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:28:24 ID:

474 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:28:41 ID:

475 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:28:57 ID:

476 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:29:14 ID:

477 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:29:31 ID:

478 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:29:47 ID:

479 132人目の素数さん 2017/08/19(土) 14:31:47 ID:
>>459
(1 - 1/180)(1 - 1/150)

480 132人目の素数さん 2017/08/19(土) 14:33:13 ID:
>>459
1-(1/180+1/150)です

481 132人目の素数さん 2017/08/19(土) 14:33:52 ID:
>>479
↑これが数学板の実力です
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル

482 132人目の素数さん 2017/08/19(土) 14:39:08 ID:
ごめん。じゃあ5以上のときでどうだ?

483 ¥ ◆2VB8wsVUoo 2017/08/19(土) 14:39:27 ID:

484 132人目の素数さん 2017/08/19(土) 14:40:00 ID:
>>480
ありがとうございます。

485 132人目の素数さん 2017/08/19(土) 14:41:49 ID:
頭の体操にどうぞ(。-ω-)…
(1)
zero
+ ten
+ forty
+ forty
-----------
ninety

(2)
338^2をninetyで割った余りを求めよ。

(3)
ninetyは素数か?
素数でない場合素因数分解せよ。

486 132人目の素数さん 2017/08/19(土) 14:44:57 ID:
>>480
それはおかしいんじゃないかな…

487 132人目の素数さん 2017/08/19(土) 14:48:09 ID:
>>482
n=5: 46656-3125=101×431
n=7: 16777216 - 823543 = 3 × 5317891
n=8: 387420489 - 16777216 = 7 × 52949039
n=9: 1410065408 - 387420489 = 41 × 24942559

488 132人目の素数さん 2017/08/19(土) 14:55:34 ID:
>>458
(n+1)^(n+1) - n^n
じゃなくて
(n+1)^n + 1 - n^n
(=(n + 1)^n 足す 1 引くn^n)
じゃないの?

489 132人目の素数さん 2017/08/19(土) 15:06:54 ID:
>>488
n = 2: 2x3
n = 3: 2 x 19
n = 4: 2 x 185
n = 5: 2 x 2326
以下 n = 6, 7, 8, 9 のすべてで駄目

490 132人目の素数さん 2017/08/19(土) 15:07:35 ID:
>>480
1/180 + 1/150 って何の確率なの?

491 132人目の素数さん 2017/08/19(土) 15:14:14 ID:
>>490
BBとRBは従属事象で排反です

492 132人目の素数さん 2017/08/19(土) 15:17:11 ID:
>>491
なるほど理解した、ありがとう、
BB=1/180 で
では問題文の 1/150 というのは BB でなく RB である確率ということですか?

493 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:28:13 ID:

494 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:28:30 ID:

495 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:28:48 ID:

496 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:29:04 ID:

497 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:29:22 ID:

498 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:29:39 ID:

499 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:29:55 ID:

500 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:30:12 ID:

501 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:30:29 ID:

502 ¥ ◆2VB8wsVUoo 2017/08/19(土) 15:30:46 ID:

503 132人目の素数さん 2017/08/19(土) 17:58:19 ID:
>>455
ありがとうございます

確かに(p-1)が7の倍数で、しかし3の倍数でないときは、3乗根があったところで解は3つには増えないですしね…

(p-1)が7の倍数になるようなpを法とするとき、どうやってcos(2π/7)+isin(2π/7)(mod p)が6つの解を持つのでしょうね
modの付いていないcos(2π/7)+isin(2π/7)の値を知りたいなぁと思ってググってみたのですが、出て来ませんでした
知っている方いたら教えてくれると有難いです

504 132人目の素数さん 2017/08/19(土) 20:10:00 ID:
>>503
exp(2πi/7) 求めたいなら、
cos(2π/7),cos(4π/7),cos(6π/7)を解に持つ三次方程式作って、カルダノの公式なりで解いてその後にsin出せば原理的には出せそう。
て計算じゃ死ぬけど

505 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:16:09 ID:

506 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:17:25 ID:

507 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:17:42 ID:

508 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:18:00 ID:

509 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:18:18 ID:

510 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:18:33 ID:

511 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:18:50 ID:

512 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:19:08 ID:

513 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:19:25 ID:

514 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:19:44 ID:

515 132人目の素数さん 2017/08/19(土) 20:38:49 ID:
>>441
経済学部?
それはさすがに…

516 132人目の素数さん 2017/08/19(土) 20:39:14 ID:
>>485こっち
面白い問題教えて~な 24問目
https://2ch.live/cache/view/math/1502016223

517 ¥ ◆2VB8wsVUoo 2017/08/19(土) 20:48:07 ID:

518 132人目の素数さん 2017/08/20(日) 00:16:42 ID:
http://imgur.com/uYiVcUK.jpg

↑は

微分積分学 (サイエンスライブラリ―数学)
笠原 晧司
固定リンク: http://amzn.asia/3ujEf2L

に載っている n 階原始関数の存在についての定理です。

d/dx F_n(x) の計算のところを見てください。

これはどうしてこういう計算になるのでしょうか?

これは、 写像 x → (x, x) と関数 (x, y) → G(x, y) の合成関数に
合成関数の微分の公式↓を適用したのでしょうか?そうだとすると納得
します。

d/dx G(x, x) = G_x(x, x) * 1 + G_y(x, x) * 1

ですが、この本ではまだこのタイプの合成関数の微分公式は証明されていません。(多変数関数はずっと後で登場します。)

合成関数の微分の公式を用いなくても、

(x - t)^(n - 1) を展開して、微分積分学の基本定理を使って普通に計算すると d/dx F_n(x) の計算結果が正しいことは
確かめられますが、ここでの著者の計算とは明らかに違います。

519 132人目の素数さん 2017/08/20(日) 01:20:30 ID:
実数値関数f:R→Rとして、g(x,y)=f(x+y)-f(x)-f(y)がR^2上有界とする
このとき、a_n=(1/2^n)*f(a*(2^n)) (aは固定) なる数列はコーシー列である

がどうもうまく解けません…
どなたか教えていただけないでしょうか?

520 132人目の素数さん 2017/08/20(日) 02:12:23 ID:
sup g(x,y) = C とおく
m<n としたとき
|a_n - a_m|
≦2^{-n}*|f((a(2^m)*2^{n-m}) - 2^{n-m}f(a(2^m))|
≦2^{-n}*(2^{n-m}-1)C → 0 (n,m → 0)

521 132人目の素数さん 2017/08/20(日) 02:45:52 ID:
>>519
単純にa_n-a_{n_1}考えてみればいいような気がするけど…

522 132人目の素数さん 2017/08/20(日) 02:46:20 ID:
って先に回答あったか

523 132人目の素数さん 2017/08/20(日) 02:57:41 ID:
>>520
最後の不等式はどこから来たんですか?

524 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:09:09 ID:

525 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:09:26 ID:

526 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:09:42 ID:

527 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:09:57 ID:

528 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:10:12 ID:

529 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:10:27 ID:

530 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:10:44 ID:

531 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:10:59 ID:

532 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:11:14 ID:

533 ¥ ◆2VB8wsVUoo 2017/08/20(日) 03:11:31 ID:

534 132人目の素数さん 2017/08/20(日) 03:32:51 ID:
>>523
gの有界性と三角不等式

535 132人目の素数さん 2017/08/20(日) 04:12:09 ID:
>>534
もう少し詳しくお願いします

536 ¥ ◆2VB8wsVUoo 2017/08/20(日) 06:21:16 ID:

537 132人目の素数さん 2017/08/20(日) 08:02:27 ID:
>>535

任意の実数 x, y に対して、

|f(x + y) - f(x) - f(y)| が有界である

と仮定する。


|f(x_1 + x_2 + … + x_n) - f(x_1) - f(x_2) - … - f(x_n)| が有界であることを数学的帰納法で証明する:

n = 2 のときは、 f についての仮定からOK。

|f(x_1 + x_2 + … + x_n) - f(x_1) - f(x_2) - … - f(x_n)| が有界であると仮定すると、

|f(x_1 + x_2 + … + x_n + x_(n+1)) - f(x_1) - f(x_2) - … - f(x_n) - f(x_(n+1)|

=

|{f(x_1 + x_2 + … + x_n + x_(n+1)) - f(x_1 + x_2 + … + x_n) - f(x_(n+1))} + {f(x_1 + x_2 + … + x_n) - f(x_1) - f(x_2) - … - f(x_n)}|



|f(x_1 + x_2 + … + x_(n+1)) - f(x_1 + x_2 + … + x_n) - f(x_(n+1))| + |f(x_1 + x_2 + … + x_n) - f(x_1) - f(x_2) - … - f(x_n)|

は有界である。

538 132人目の素数さん 2017/08/20(日) 08:12:02 ID:
|f(a * 2^n) / 2^n - f(a * 2^m) / 2^m|

=

(1 / 2^n) * |f(a * 2^n) - 2^(n - m) * f(a * 2^m)|

=

(1 / 2^n) * |f(a * 2^m * 2^(n - m)) - 2^(n - m) * f(a * 2^m)|

=

(1 / 2^n) * |f(a * 2^m) + … + f(a * 2^m) - f(a * 2^m) - … - f(a * 2^m)|

<

(1 / 2^n) * K (for some positive real number K)



0

539 132人目の素数さん 2017/08/20(日) 08:16:50 ID:
>>518

回答がありませんね。

やはり笠原さんはまだ証明してもいない合成関数の微分法の公式を
使っているとしか考えられません。

もしそうだとすると、あきれるほどいい加減な人ですね。

以前、笠原さんの線形代数の本をパラパラ見たときにも、まだ証明していない
ことを使って証明するという箇所がありました。

540 132人目の素数さん 2017/08/20(日) 08:20:03 ID:
>>538

訂正します:

|f(a * 2^n) / 2^n - f(a * 2^m) / 2^m|

=

(1 / 2^n) * |f(a * 2^n) - 2^(n - m) * f(a * 2^m)|

=

(1 / 2^n) * |f(a * 2^m * 2^(n - m)) - 2^(n - m) * f(a * 2^m)|

=

(1 / 2^n) * |f(a * 2^m + … + a * 2^m) - f(a * 2^m) - … - f(a * 2^m)|

<

(1 / 2^n) * K (for some positive real number K)



0

541 132人目の素数さん 2017/08/20(日) 08:20:22 ID:
高校生です。

興味が出たので、大学物理を勉強しています。

物理は、私たちが住んでいるこの世界がどのような法則に従って成り立っているかを研究する学問であると私は考えているので、強く興味を持つことができました。

しかし、そのような興味が持てる物理学と比較して、高校数学(特定の分野)は何の役に立つのだろうかと思ってしまい、興味が持てませんでした。

数学が嫌いなわけではないのですが、好きにもなれません。

特に好きになれない(興味を持つことができるものなら持ちたい)のが、数学A分野です。

例えば、整数問題についてですが、整数問題を解けるようになれば、何か他の分野に応用できるのでしょうか。

他にも、場合の数や確率についてですが、計算する意味がわかりませんでした。

大学受験を突破しなければいけない立場ではあるので、もしそれら特定の分野に「意味はない」のであれば、それを受け入れて高校数学も勉強しようと思いますが、意味がもしあるのであれば、それを知りたいです。

なぜ知りたいのかと言えば、ただただ知りたいからです。

微積分や複素数は必要な情報・知識であると思います。しかし、それ以外の特定の分野について、それらの知識を身につけることに意味はあるのでしょうか。

542 132人目の素数さん 2017/08/20(日) 08:31:24 ID:
>>541

微積分を勉強すると、任意の自然数 n について以下の等式が成り立つことを証明できたりします。

1 + 1/2 + 1/3 + … + 1/n

=

log(n) + γ + 1/(2*n) - 1/(12*n^2) + 1/(120*n^4) - ε

ただし、γ はある実数であり、 ε は 0 < ε < 1/(252*n^6) を満たす実数

543 132人目の素数さん 2017/08/20(日) 08:32:13 ID:
訂正します:

>>541

微積分を勉強すると、任意の自然数 n について以下の等式が成り立つことを証明できたりします。

1 + 1/2 + 1/3 + … + 1/n

=

log(n) + γ + 1/(2*n) - 1/(12*n^2) + 1/(120*n^4) - ε

ただし、γ はある実数の定数であり、 ε は 0 < ε < 1/(252*n^6) を満たす実数

544 132人目の素数さん 2017/08/20(日) 08:33:09 ID:
訂正します:

>>541

微積分を勉強すると、任意の自然数 n について以下の等式が成り立つことを証明できたりします。

1 + 1/2 + 1/3 + … + 1/n

=

log(n) + γ + 1/(2*n) - 1/(12*n^2) + 1/(120*n^4) - ε

ただし、γ はある実数の定数であり、 ε は 0 < ε < 1/(252*n^6) を満たす実数(ε は n に依存します。)

545 132人目の素数さん 2017/08/20(日) 08:37:16 ID:
>>541

整数問題というのがどういうものか分かりませんが、高校でやるような整数の問題は
役に立たないと思います。

確率は明らかに役に立つと思います。

546 132人目の素数さん 2017/08/20(日) 08:39:00 ID:
>>541

微積分を習うとケプラーの法則が成り立つことをニュートンの法則から証明できます。

547 132人目の素数さん 2017/08/20(日) 08:39:06 ID:
楽しいというモチベーションでやってる身からすると、役に立つとか立たないとかは二の次だぞ

548 132人目の素数さん 2017/08/20(日) 08:39:47 ID:
>>541

物理の法則自体が微分方程式で記述されています。

549 132人目の素数さん 2017/08/20(日) 08:42:27 ID:
アスペ爺の連投芸www

550 132人目の素数さん 2017/08/20(日) 08:43:42 ID:
>>541

微積分を習うと

たとえば、勾配が12.3456789度の坂の傾きをいくらでも正確に計算することができます。

551 541 2017/08/20(日) 08:51:03 ID:
>>542
ご回答ありがとうございます。
微積分は必要であると私も思っていますし、そう>>541にも書き込ませていただきました。

>>545
やはり(高校数学の)整数分野の知識は応用できる分野がないのですね。

場合の数や確率は何の約に立つのでしょうか。

552 132人目の素数さん 2017/08/20(日) 08:52:34 ID:
>>551

特殊な用途ですが、整数論は、暗号理論とかに役に立っています。

553 132人目の素数さん 2017/08/20(日) 08:54:02 ID:
ですが、高校でやる整数の問題の知識が直接役に立つかは分かりません。

554 132人目の素数さん 2017/08/20(日) 08:56:58 ID:
よく知りませんが、物理でも、統計力学や量子力学などで確率の知識は基本的なのではないでしょうか?

555 132人目の素数さん 2017/08/20(日) 08:58:06 ID:
場合の数は確率の計算をするのに役に立ちます。

556 132人目の素数さん 2017/08/20(日) 09:05:53 ID:
>>554
微積分の簡単な本ばかり読んでいる人は気にしなくていいことですよ

557 132人目の素数さん 2017/08/20(日) 09:13:31 ID:
誰か>>329をお願いします……

558 132人目の素数さん 2017/08/20(日) 09:13:31 ID:
>>541

複素数は量子力学で不可欠だそうです。

559 132人目の素数さん 2017/08/20(日) 09:14:43 ID:
>>557

宮岡悦良・永倉安次郎著『解析学I』のp.215の問題ですね。

宮岡悦良・永倉安次郎著『解析演習 一変数関数編』のp.115に詳しい解答が
書いてあります。

560 132人目の素数さん 2017/08/20(日) 09:16:35 ID:

561 132人目の素数さん 2017/08/20(日) 09:17:53 ID:
>>559
微積分の簡単な本にはすごく詳しいですね

562 132人目の素数さん 2017/08/20(日) 09:50:36 ID:
古典的名著に学ぶ微積分の基礎
高瀬 正仁
固定リンク: http://amzn.asia/5FfCweR

↑の本を読んだ人はいますか?


スチュワート微分積分学I(原著第8版): 微積分の基礎
J. Stewart
固定リンク: http://amzn.asia/abiqS67

微分積分
吉田 伸生
固定リンク: http://amzn.asia/0XkBuW9

↑の2冊が9月に発売されますね。

563 132人目の素数さん 2017/08/20(日) 10:15:06 ID:
>>562
洋書は読まないんですか?

564 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:26:35 ID:

565 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:26:53 ID:

566 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:27:10 ID:

567 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:27:27 ID:

568 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:27:44 ID:

569 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:28:01 ID:

570 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:28:18 ID:

571 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:28:33 ID:

572 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:28:51 ID:

573 ¥ ◆2VB8wsVUoo 2017/08/20(日) 10:29:09 ID:

574 132人目の素数さん 2017/08/20(日) 10:36:05 ID:
>>540
これはひどい

575 132人目の素数さん 2017/08/20(日) 10:46:14 ID:
あ、 K は共通の値じゃないですね。

576 132人目の素数さん 2017/08/20(日) 11:21:38 ID:
任意の実数 x, y に対して、

|f(x + y) - f(x) - f(y)| < K

と仮定する。

n を任意の自然数、 b を任意の実数とする。

|f(2^n * b) - 2^n * f(b)| < (2^n - 1) * K

が成り立つ。

n = 1 のときは、 f に関する仮定から成り立つ。

n = k のときに、 b を任意の実数として、

|f(2^k * b) - 2^k * f(b)| < (2^k - 1) * K

が成り立つと仮定する。

b を任意の実数として、 n = k + 1 のときを考える。

|f(2^(k + 1) * b) - 2^(k + 1) * f(b)|

=

|f(2^k * b + 2^k * b) - 2 * f(2^k * b) + 2 * f(2^k * b) - 2 * 2^k * f(b)|



|f(2^k * b + 2^k * b) - 2 * f(2^k * b)| + |2 * f(2^k * b) - 2 * 2^k * f(b)|

=

|f(2^k * b + 2^k * b) - 2 * f(2^k * b)| + 2 * |f(2^k * b) - 2^k * f(b)|

<

K + 2 * (2^k - 1) * K

=

K + (2^(k + 1) - 2) * K

=

(2^(k + 1) - 1) * K

以上から、

n を任意の自然数、 b を任意の実数とする。

|f(2^n * b) - 2^n * f(b)| < (2^n - 1) * K

が成り立つ。

577 132人目の素数さん 2017/08/20(日) 11:31:10 ID:
|f(a * 2^n) / 2^n - f(a * 2^m) / 2^m|

=

(1 / 2^n) * |f(2^n * a) - 2^(n - m) * f(2^m * a)|

=

(1 / 2^n) * |f(2^(n - m) * 2^m * a) - 2^(n - m) * f(2^m * a)|

<

(1 / 2^n) * (2^(n - m) - 1) * K

=

(1 / 2^m - 1 / 2^n) * K

数列 {1 / 2^n} は収束数列だから、コーシー列である。

よって、 n → ∞、 m → ∞ のとき、

(1 / 2^m - 1 / 2^n) * K → 0

である。

578 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:34:31 ID:

579 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:34:50 ID:

580 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:35:06 ID:

581 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:35:22 ID:

582 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:35:38 ID:

583 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:35:56 ID:

584 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:36:13 ID:

585 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:36:31 ID:

586 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:36:48 ID:

587 ¥ ◆2VB8wsVUoo 2017/08/20(日) 11:37:07 ID:

588 132人目の素数さん 2017/08/20(日) 12:33:38 ID:
http://imgur.com/B0y4VbG.jpg

↑は、藤原松三郎の微分積分学第1巻ですが、

この「極限の存在条件」の証明の最後の部分が意味不明です。

なぜ、 (x_n) はは別に (x_n') という数列を考えているのでしょうか?

全く意味不明です。

589 132人目の素数さん 2017/08/20(日) 12:35:40 ID:
>>562
洋書は読まないんですか?
何故微積分の簡単な本ばかり読んでいるのですか?

590 132人目の素数さん 2017/08/20(日) 12:43:24 ID:
>>588

あ、分かりました。

591 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:44:11 ID:

592 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:44:29 ID:

593 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:44:46 ID:

594 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:45:01 ID:

595 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:45:18 ID:

596 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:45:34 ID:

597 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:45:50 ID:

598 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:46:05 ID:

599 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:46:20 ID:

600 ¥ ◆2VB8wsVUoo 2017/08/20(日) 12:46:34 ID:

601 132人目の素数さん 2017/08/20(日) 12:51:34 ID:
無駄な事してるより勉強でもすればいいのに

602 ¥ ◆2VB8wsVUoo 2017/08/20(日) 13:31:49 ID:

603 132人目の素数さん 2017/08/20(日) 13:48:24 ID:
>>541
>整数問題を解けるようになれば、何か他の分野に応用できるのでしょうか。
長らく応用分野がない状況だったが、現在は暗号系に利用されている。RSA 暗号ならば整数論の教科書をちょっと読めば手が届く
https://ja.wikisource.org/wiki/%E5%88%9D%E7%AD%89%E6%95%B4%E6%95%B0%E8%AB%96%E8%AC%9B%E7%BE%A9

>場合の数や確率についてですが
確率・統計は社会に出て利用できる可能性が一番高い、社会では確率論や統計学をこなせれば出世できるかもしれない

>意味がもしあるのであれば、それを知りたいです。
高校数学はすべての基本です、物理・化学その他応用分野をやるにしても高校数学をこなせないと話にならない

>それ以外の特定の分野について、それらの知識を身につける
微積分=解析学と行列ベクトル=線形代数はぜひ身につけておいてほしい、これはよく覚えておいてください

604 132人目の素数さん 2017/08/20(日) 13:50:04 ID:
>>601
日本語の勉強をしているのでは?
入門書とはいえ数学書で、というのは
なかなかいい趣向だとは思うけどね。

605 ¥ ◆2VB8wsVUoo 2017/08/20(日) 13:58:47 ID:

606 ¥ ◆2VB8wsVUoo 2017/08/20(日) 13:59:18 ID:

607 ¥ ◆2VB8wsVUoo 2017/08/20(日) 13:59:34 ID:

608 ¥ ◆2VB8wsVUoo 2017/08/20(日) 13:59:51 ID:

609 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:00:06 ID:

610 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:00:39 ID:

611 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:00:55 ID:

612 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:01:13 ID:

613 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:01:28 ID:

614 ¥ ◆2VB8wsVUoo 2017/08/20(日) 14:01:46 ID:

615 132人目の素数さん 2017/08/20(日) 17:23:44 ID:
人口100万人の国でサンプル数1000人で何か調査するのと、人口1000万人の国でサンプル数1000人で調査するのでは精度に差はありますか?
あるとしたら、前者と同じ精度で人口1000万人の国で調査するためには、サンプル数はいくつにしたらよいですか?

616 132人目の素数さん 2017/08/20(日) 17:50:42 ID:
今コラッツの予想が正しいことを証明しようとしています
ここで初期値に使うのは奇数です。
考えているのは、3n+1と、n/2の操作がされた時に、合流する数に着目して、その数から分岐する時に、3n+1とn/2の操作をした数の差を正の数になるようにして算出し、
それを合流した数から差を引いたら、どこでも分岐点では4n+3の一次関数になることがわかりました。ですから、分岐が一生続くのだから、逆に言えば合流していけば、最後にたどり着くのは1となる。
という考えです。どうでしょうか

617 ¥ ◆2VB8wsVUoo 2017/08/20(日) 17:52:28 ID:

618 132人目の素数さん 2017/08/20(日) 17:55:05 ID:
>>616
なので、どんなに大きい数でも、分岐がある時点で1に最終的に有限回でつくことがわかると思いました

619 132人目の素数さん 2017/08/20(日) 18:08:47 ID:
>>618
あ、1,2,4以外のある数から出発し、処理を何回か繰り返すと、ある数に戻ってしまうとき、1には辿りつかないので、この循環のループが無いことを証明する必要があるんですかね

620 132人目の素数さん 2017/08/20(日) 18:47:58 ID:
>>616
もうちょっと正確にかけませんか
合流とは分岐とは何かわざわざ想像しながら読むのは大変です

621 132人目の素数さん 2017/08/20(日) 19:03:21 ID:
>>620
合流してる数というのは、奇数を3とした時、3×3+1で10で、20も20÷2で10となるので、この場合は10がこの二つの数の合流と言えます。
分岐はその逆と定義してください。。。

622 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:39:33 ID:

623 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:39:52 ID:

624 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:40:10 ID:

625 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:40:28 ID:

626 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:40:46 ID:

627 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:41:04 ID:

628 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:41:20 ID:

629 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:41:37 ID:

630 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:41:55 ID:

631 ¥ ◆2VB8wsVUoo 2017/08/20(日) 20:42:14 ID:

632 132人目の素数さん 2017/08/20(日) 22:11:04 ID:
何度もすみません

>>329ですが、>>355の方針でやろうとすると2階微分の項はどう処理すればいいですか?

633 132人目の素数さん 2017/08/20(日) 22:27:13 ID:
どこで詰まってるのかがわからんからやったところまで書いて

634 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:36:17 ID:

635 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:36:33 ID:

636 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:36:50 ID:

637 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:37:06 ID:

638 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:37:23 ID:

639 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:37:39 ID:

640 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:37:56 ID:

641 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:38:12 ID:

642 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:38:29 ID:

643 ¥ ◆2VB8wsVUoo 2017/08/20(日) 22:38:48 ID:

644 132人目の素数さん 2017/08/21(月) 01:53:08 ID:
(1/10)x*(1/9)x=2/15

誰か解き方教えて下さい><

645 644 2017/08/21(月) 01:58:54 ID:
問題を間違えました。

(1/10)x*(1/9)(x-1)=2/15

でお願いします

646 132人目の素数さん 2017/08/21(月) 02:16:02 ID:
a_nを正の実数として、
f(x)=蚤_n*x^n (nは0から∞)が|x|<1で収束するとする
f(x)が[0,1)で有界なとき、蚤_nは収束することを示せ

これ分かる方教えていただけませんか?

647 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:23:05 ID:

648 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:23:21 ID:

649 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:23:37 ID:

650 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:23:52 ID:

651 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:24:08 ID:

652 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:24:24 ID:

653 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:24:39 ID:

654 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:24:56 ID:

655 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:25:11 ID:

656 ¥ ◆2VB8wsVUoo 2017/08/21(月) 04:25:31 ID:

657 132人目の素数さん 2017/08/21(月) 06:56:31 ID:
>>645
(1/10)x*(1/9)(x-1)=2/15
x(x-1)=12 両辺に90をかける
x^2-x-12=0 両辺から12を引く
(x+3)(x-4)=0 左辺を因数分解する
x=-3,4

658 ¥ ◆2VB8wsVUoo 2017/08/21(月) 07:29:15 ID:

659 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:21:57 ID:

660 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:22:14 ID:

661 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:22:30 ID:

662 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:22:46 ID:

663 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:23:02 ID:

664 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:23:18 ID:

665 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:23:36 ID:

666 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:23:52 ID:

667 ¥ ◆2VB8wsVUoo 2017/08/21(月) 08:24:19 ID:

668 132人目の素数さん 2017/08/21(月) 09:54:17 ID:
木村俊房著『常微分方程式の解法』を読んでいます。

「y = φ(x) を微分方程式 f(x, y, y') = 0 の解とする。
φ'(x) も連続で φ'(x0) ≠ 0 ならば、微分学で知られている通り、
x0 の近くで y = φ(x) の逆函数 x = ψ(y) が定まり
dy/dx = 1 / dx/dy である。」

と書いてあります。

「φ'(x) も連続で 」がなぜ必要なのかが分かりません。

回答をお願いします。

669 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:26:46 ID:

670 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:27:32 ID:

671 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:27:50 ID:

672 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:28:09 ID:

673 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:28:26 ID:

674 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:28:43 ID:

675 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:29:02 ID:

676 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:29:20 ID:

677 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:29:38 ID:

678 ¥ ◆2VB8wsVUoo 2017/08/21(月) 10:29:58 ID:

679 132人目の素数さん 2017/08/21(月) 12:28:35 ID:
>>668
「φ'(x) も連続で φ'(x0) ≠ 0 」でセットになっているのでは?
「φ'(x) も連続で 」は仮定だとおもう

680 ¥ ◆2VB8wsVUoo 2017/08/21(月) 12:36:47 ID:

681 644 2017/08/21(月) 12:37:45 ID:
>>657
ありがとうございます。

682 ¥ ◆2VB8wsVUoo 2017/08/21(月) 12:43:24 ID:

683 132人目の素数さん 2017/08/21(月) 13:06:16 ID:
>>679

φ'(x) が連続でなくても φ'(x0) ≠ 0 ならば、
x0 の近くで y = φ(x) の逆函数 x = ψ(y) が定まる
のではないでしょうか?

684 132人目の素数さん 2017/08/21(月) 13:10:20 ID:
あ、 φ(x) は単調でなきゃ駄目ですね。

φ'(x) が連続で φ'(x0) ≠ 0 ならば、 x0 の近くで、 φ'(x) は正または負ですね。

685 132人目の素数さん 2017/08/21(月) 13:11:22 ID:
だから、 x0 の近くで、 φ'(x) は増加または減少ですね。

>>679

ありがとうございました。

686 132人目の素数さん 2017/08/21(月) 13:12:42 ID:
訂正します:

だから、 x0 の近くで、 φ(x) は増加または減少ですね。

>>679

ありがとうございました。

687 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:47:08 ID:

688 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:47:25 ID:

689 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:47:42 ID:

690 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:47:58 ID:

691 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:48:15 ID:

692 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:48:31 ID:

693 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:48:48 ID:

694 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:49:10 ID:

695 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:49:28 ID:

696 ¥ ◆2VB8wsVUoo 2017/08/21(月) 13:49:46 ID:

697 132人目の素数さん 2017/08/21(月) 15:27:36 ID:
∫ sin(x)^2 / (1 - 2*a*cos(x) + a^2) dx from x = 0 to x = π

を求めよという問題が笠原さんの微分積分学に書いてあります。

これはどうやって解くのでしょうか?

章末問題でもないのに、ちょっと難しすぎるのではないでしょうか?

698 132人目の素数さん 2017/08/21(月) 15:29:27 ID:
8 ∫ {t^2 / (1 + t^2)^2} * {1 / (a - 1)^2 + (a + 1)^2 * t^2 dt from t = 0 to t = ∞

まで行きましたがその先はどうやるんですか?

699 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:52:32 ID:

700 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:52:47 ID:

701 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:53:03 ID:

702 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:53:20 ID:

703 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:53:36 ID:

704 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:53:52 ID:

705 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:54:11 ID:

706 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:54:28 ID:

707 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:54:44 ID:

708 ¥ ◆2VB8wsVUoo 2017/08/21(月) 16:55:01 ID:

709 132人目の素数さん 2017/08/21(月) 16:59:20 ID:
>>698
わからないんですか?

710 ¥ ◆2VB8wsVUoo 2017/08/21(月) 17:42:15 ID:

711 132人目の素数さん 2017/08/21(月) 18:13:42 ID:
>>646
すみません
どなたか分かる方教えていただけないでしょうか…

712 ¥ ◆2VB8wsVUoo 2017/08/21(月) 18:39:05 ID:

713 132人目の素数さん 2017/08/21(月) 18:46:22 ID:
赤玉7個、白玉3個入った箱がある。
次の確率を求めよ。

(1)5個同時に取り出す場合、
赤玉が2個取り出される確率。

(2)5個同時に取り出す場合、
赤玉が3個取り出される確率。

(4)3個同時に取り出す場合、
全て白玉が取り出される確率。

(5)1個ずつ3回取り出す場合、(取り出した玉は戻さない場合)
1個目に赤玉が取り出される確率。

(6)1個ずつ3回取り出す場合、(取り出した玉は戻さない場合)
3個目に赤玉が取り出される確率。

(7)1個ずつ3回取り出す場合、(取り出した玉は戻さない場合)
3個目"だけ"に赤玉が取り出される確率。

(8)1個ずつ5回取り出す場合、(取り出した玉は戻さない場合)
3個目"だけ"に白玉が取り出される確率。

(9)1個ずつ5回取り出す場合、(取り出した玉を戻す場合)
5個目"だけ"に赤玉が取り出される確率。

お願いします。

714 132人目の素数さん 2017/08/21(月) 18:53:45 ID:
>>709

有理関数なので計算するアルゴリズムはあります。
ですが、面倒です。

ですので、効率的で標準的な解答をお願いします。

715 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:23:05 ID:

716 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:23:21 ID:

717 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:23:37 ID:

718 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:23:54 ID:

719 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:24:09 ID:

720 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:24:26 ID:

721 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:24:44 ID:

722 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:25:01 ID:

723 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:25:23 ID:

724 ¥ ◆2VB8wsVUoo 2017/08/21(月) 19:25:41 ID:

725 132人目の素数さん 2017/08/21(月) 20:14:12 ID:
イケメンで、数学が得意な皆さん。
>>713をお願いします。m(_ _)m

726 132人目の素数さん 2017/08/21(月) 20:19:53 ID:
数学得意はともかくイケメンはいねえな

727 132人目の素数さん 2017/08/21(月) 20:30:03 ID:
>>646
上界は有限項で切ったものの上界で1にしたときの上界なので収束。

728 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:43:57 ID:

729 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:44:14 ID:

730 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:44:30 ID:

731 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:44:46 ID:

732 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:45:01 ID:

733 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:45:18 ID:

734 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:45:35 ID:

735 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:45:52 ID:

736 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:46:10 ID:

737 ¥ ◆2VB8wsVUoo 2017/08/21(月) 20:46:28 ID:

738 132人目の素数さん 2017/08/21(月) 21:22:31 ID:
>>633
http://i.imgur.com/NoJe728.jpg

f'(x)を展開しても(上側)、剰余項がcはx(と(a+ξ)/2)に依存するから軽々しくxに代入なんてできないですし……
かと言ってf'(ξ)を(a+b)/2の周りで展開しても、下側のように2階微分は消えないですし(そもそも凸関数だったら常にf"≠0)、どう処理すればいいのかわからないです

739 132人目の素数さん 2017/08/21(月) 21:25:24 ID:
>>738
>(そもそも凸関数だったら常にf"≠0)

どうでもいいですが「狭義凸(上もしくは下)なら」ですね

740 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:14:54 ID:

741 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:15:10 ID:

742 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:15:26 ID:

743 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:15:42 ID:

744 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:15:57 ID:

745 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:16:11 ID:

746 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:16:44 ID:

747 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:17:00 ID:

748 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:17:16 ID:

749 ¥ ◆2VB8wsVUoo 2017/08/21(月) 22:17:30 ID:

750 132人目の素数さん 2017/08/21(月) 23:10:23 ID:
>>726
皆さん、イケメンですよ。
よろしくお願いします。

751 132人目の素数さん 2017/08/21(月) 23:29:44 ID:
すいません。どなたか数III4stepから40(2)の答えの不等式の変形
0<α n-1<4 を0<1/2+√α n-1<1/2 に変形できません。どなたか詳しい計算をしていただけるとありがたいです。
http://i.imgur.com/8slFAem.jpg

http://i.imgur.com/eHRp8ga.jpg

752 132人目の素数さん 2017/08/21(月) 23:39:11 ID:
>>727
ありがとうございます

753 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:43:16 ID:

754 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:43:32 ID:

755 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:43:48 ID:

756 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:44:04 ID:

757 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:44:20 ID:

758 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:44:38 ID:

759 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:44:55 ID:

760 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:45:11 ID:

761 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:45:30 ID:

762 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:45:47 ID:

763 132人目の素数さん 2017/08/21(月) 23:48:32 ID:
分子はでかい方がでかい
分母は小さい方がでかい
分母のanに0入れるのがいちばんでかい

764 ¥ ◆2VB8wsVUoo 2017/08/21(月) 23:49:03 ID:

765 132人目の素数さん 2017/08/22(火) 00:01:45 ID:
>>751
√a_(n-1)は正(ルートの定義)
ということは2+√a_(n-1)>2 ですね
以下略

766 132人目の素数さん 2017/08/22(火) 00:06:15 ID:
体kとして、k[x,y]/(x,y)はkに同型ですが、例えばk[x,y]/(xy)やk[x,y,z]/(xy-z)などは何と同型になるのでしょうか?

767 132人目の素数さん 2017/08/22(火) 00:10:27 ID:
>>738
F(x)の定義のところ
f'((a+b)/2)じゃなくてf'((a+x)/2)とする
ていうか>>355で間違えてたわすまん!

768 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:45:50 ID:

769 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:46:10 ID:

770 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:46:28 ID:

771 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:46:45 ID:

772 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:47:03 ID:

773 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:47:21 ID:

774 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:47:40 ID:

775 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:47:58 ID:

776 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:48:32 ID:

777 ¥ ◆2VB8wsVUoo 2017/08/22(火) 00:48:48 ID:

778 132人目の素数さん 2017/08/22(火) 01:02:58 ID:
>>767
それが当初(>>329)やってた方針だったので、まさかと思いつつやってみたらできました
ありがとうございました!

>>329で出してた-1/8は酷い計算ミス(移項しても符号変えてなかったりいつの間にかAの係数の3が抜けてたり)してました……

779 132人目の素数さん 2017/08/22(火) 01:41:33 ID:
>>751

0 < α < 4,
0 < √α < 2,
2 < 2 + √α < 4,
1/4 < 1/(2+√α) < 1/2,

余談だが (3) は
 a_n ={2cos(θ/2^(n-1))}^2 → 4 (n→∞)
より明らか??

780 ¥ ◆2VB8wsVUoo 2017/08/22(火) 01:59:34 ID:

781 ¥ ◆2VB8wsVUoo 2017/08/22(火) 01:59:51 ID:

782 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:00:07 ID:

783 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:00:23 ID:

784 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:00:38 ID:

785 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:00:53 ID:

786 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:01:10 ID:

787 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:01:26 ID:

788 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:01:46 ID:

789 ¥ ◆2VB8wsVUoo 2017/08/22(火) 02:02:03 ID:

790 132人目の素数さん 2017/08/22(火) 07:30:58 ID:
http://imgur.com/6JL4YRr.jpg

↑は、

微分積分 (共立講座 21世紀の数学)
黒田 成俊
固定リンク: http://amzn.asia/iwZT7Yy

です。

n 乗根についてなのですが、赤い線を引いたところが意味不明です。

なぜ、「x^2」、「n^2」となっているのでしょうか?

791 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:43:25 ID:

792 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:43:47 ID:

793 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:44:06 ID:

794 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:44:23 ID:

795 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:44:40 ID:

796 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:44:57 ID:

797 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:45:15 ID:

798 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:45:31 ID:

799 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:46:02 ID:

800 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:46:19 ID:

801 132人目の素数さん 2017/08/22(火) 07:46:32 ID:
x^n ≧ 0 だから J ⊂ [0, ∞)

m = 1, 2, … に対して 0 < m ≦ m^n ∈ J

だったら意味が通じるのですが。

802 132人目の素数さん 2017/08/22(火) 07:47:58 ID:
この黒田さんの本ですが、バランスの悪い本ですね。
前半は異常に丁寧。後半は単なる要約。

計画性ゼロですね。

803 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:51:12 ID:

804 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:51:30 ID:

805 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:51:46 ID:

806 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:52:02 ID:

807 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:52:18 ID:

808 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:52:34 ID:

809 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:52:51 ID:

810 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:53:06 ID:

811 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:53:22 ID:

812 ¥ ◆2VB8wsVUoo 2017/08/22(火) 07:53:42 ID:

813 132人目の素数さん 2017/08/22(火) 07:54:06 ID:
後半は時間がなかったとか言い訳していますが、時間がないなら書かなければいいのにと思いますよね。

814 132人目の素数さん 2017/08/22(火) 08:01:25 ID:
>>790>>801
ID:nvjPBYhDさんが正しい
誤植だろう

815 132人目の素数さん 2017/08/22(火) 08:02:40 ID:
>>790

n = 2 の場合、つまり平方根の場合のみを誤って考えているということですかね?

教科書執筆には年齢制限を設けた方がいいですね。

816 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:02:41 ID:

817 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:02:58 ID:

818 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:03:14 ID:

819 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:03:30 ID:

820 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:03:47 ID:

821 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:04:02 ID:

822 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:04:19 ID:

823 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:04:39 ID:

824 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:04:59 ID:

825 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:05:20 ID:

826 132人目の素数さん 2017/08/22(火) 08:12:21 ID:
>>814

誤りでしたか。

ありがとうございました。

827 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:25:26 ID:

828 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:25:44 ID:

829 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:26:01 ID:

830 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:26:16 ID:

831 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:26:31 ID:

832 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:26:46 ID:

833 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:27:02 ID:

834 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:27:19 ID:

835 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:27:36 ID:

836 ¥ ◆2VB8wsVUoo 2017/08/22(火) 08:27:52 ID:

837 132人目の素数さん 2017/08/22(火) 09:38:38 ID:
今日のNGID:nvjPBYhD

838 ¥ ◆2VB8wsVUoo 2017/08/22(火) 09:43:09 ID:

839 132人目の素数さん 2017/08/22(火) 10:33:33 ID:
あからさまな自演wwww
>>814

840 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:44:44 ID:

841 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:45:02 ID:

842 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:45:19 ID:

843 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:45:34 ID:

844 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:45:50 ID:

845 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:46:07 ID:

846 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:46:25 ID:

847 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:46:41 ID:

848 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:46:59 ID:

849 ¥ ◆2VB8wsVUoo 2017/08/22(火) 10:47:16 ID:

850 132人目の素数さん 2017/08/22(火) 12:06:43 ID:
>>837
自演じゃないよ
おまえもバカだね(^^
分かってたら、早く答えてやれよ(^^

初心者は、テキストは正しいと思って読むが
経験を積むと、テキストは
しばしば、単純な誤植などがある知るものなんだよね(^^

851 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:08:47 ID:

852 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:09:02 ID:

853 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:09:19 ID:

854 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:09:35 ID:

855 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:09:52 ID:

856 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:10:09 ID:

857 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:10:25 ID:

858 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:10:43 ID:

859 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:11:01 ID:

860 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:11:16 ID:

861 132人目の素数さん 2017/08/22(火) 12:16:22 ID:
擁護するのは同レベルの馬鹿ばかり

862 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:26:12 ID:

863 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:26:29 ID:

864 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:26:44 ID:

865 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:26:59 ID:

866 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:27:14 ID:

867 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:27:29 ID:

868 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:27:43 ID:

869 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:27:58 ID:

870 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:28:15 ID:

871 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:28:46 ID:

872 132人目の素数さん 2017/08/22(火) 12:41:43 ID:
>>850
誤植wwwwwww


このスレに誤植誤植と騒ぐバカは一人しかいませんよwwwwwww

873 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:52:58 ID:

874 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:53:15 ID:

875 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:53:32 ID:

876 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:53:50 ID:

877 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:54:07 ID:

878 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:54:24 ID:

879 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:54:39 ID:

880 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:54:57 ID:

881 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:55:17 ID:

882 ¥ ◆2VB8wsVUoo 2017/08/22(火) 12:55:35 ID:

883 132人目の素数さん 2017/08/22(火) 13:08:37 ID:
木村俊房著『常微分方程式の解法』を読んでいます。

y = A * cos(x / A)

が解となるような微分方程式を作れという問題の解答が、

y' + sin(x * sqrt(1 - y'^2) / y) = 0

となっています。

y = cos(x) (π/2 < x < (3/2) * π)

という関数を考えると、この関数は↑の微分方程式の解になっていません。

884 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:19:50 ID:

885 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:20:08 ID:

886 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:20:24 ID:

887 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:20:41 ID:

888 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:20:57 ID:

889 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:21:14 ID:

890 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:21:31 ID:

891 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:21:47 ID:

892 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:22:05 ID:

893 ¥ ◆2VB8wsVUoo 2017/08/22(火) 13:22:21 ID:

894 132人目の素数さん 2017/08/22(火) 13:57:01 ID:
>>850
新入りか、力抜けよ

895 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:00:44 ID:

896 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:01:02 ID:

897 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:01:20 ID:

898 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:01:36 ID:

899 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:01:52 ID:

900 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:02:09 ID:

901 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:02:25 ID:

902 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:02:42 ID:

903 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:02:58 ID:

904 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:03:16 ID:

905 132人目の素数さん 2017/08/22(火) 14:43:12 ID:
>>883
毎度毎度うぜえよ
高校数学レベルの問題解説すら理解できてねえ雑魚が誤植とかほざいてんじゃねえよ
おまえが間違ってんだよ!!!

906 132人目の素数さん 2017/08/22(火) 14:44:11 ID:
>>883
おめえが理解できねえからって
参考書が誤植とか間違ってるとかほざいてんじゃねえ

907 132人目の素数さん 2017/08/22(火) 14:44:40 ID:
>>883
死ね

908 132人目の素数さん 2017/08/22(火) 14:47:54 ID:
>>907
ある公理系τの任意のモデルに対してある論理式φが真であれば、τからφがLKにおいて証明可能であることを示せ、という問題がわかりません

909 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:53:50 ID:

910 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:54:08 ID:

911 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:54:26 ID:

912 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:54:44 ID:

913 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:55:02 ID:

914 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:55:19 ID:

915 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:55:37 ID:

916 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:55:53 ID:

917 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:56:11 ID:

918 ¥ ◆2VB8wsVUoo 2017/08/22(火) 14:56:32 ID:

919 132人目の素数さん 2017/08/22(火) 15:15:57 ID:
>>861
擁護はしていない。事実を述べた

>>872
誤植と思ったから、誤植と書いた
いまどき、誤植は死語かもしらんがね
まあ、誤植ではなく著者のミスもありうるけど

>>894
スタンバイ中でヒマなんよ(^^

>>883
それもなんかの間違いと思うよ
”y = A * cos(x / A)

が解となるような微分方程式を作れという問題”って、
それ問題になってない気がするが
両辺微分すれば、終わりでしょ?
答え:y' + sin(x * sqrt(1 - y'^2) / y) = 0 か
教育課程の一局面なんかね?

X=x / A, y=f(x)=A * cos(x / A)=A * cos(X)
(cos(x))'=-sin(x), dX/dx=1/A に注意すれば

y'=df(x)/dx=df(X)/dX・dX/xdx=-sin(X)・A=-Asin(x / A)
つまり
y'=-sin(x / A)
としかならん気がする

ああ、それで
y' + sin(x * sqrt(1 - y'^2) / y) = 0
 ↓
y' =-sin(x * sqrt(1 - y'^2) / y)
と比較すると、

A→sqrt(1 - y'^2) / y の置き換えか・・
sin^2(x / A)+cos^2(x / A) =1 より cos(x / A) =+ or - sqrt(1 - y'^2) にして
cos(x / A) /y=cos(x / A)/(A * cos(x / A))=1/A としとるわけか?
”+ or - ”のところ、cos(x / A) の正負で場合分けが必要では? (大学入試に出そうかな。”平方根を開くときの注意”って)

なので、定数A=1 として
”y = cos(x) (π/2 < x < (3/2) * π)
という関数を考えると、この関数は↑の微分方程式の解になっていません。”
というのは正しね。その場合、cos(x) (π/2 < x < (3/2) * π)は負だから、符号 ”-”にしないといけないかな

出題意図は、「定数Aを消す」ってことかな?
教育課程の一局面なんかね?

ところで、ID:nvjPBYhDさんも、こんなバカ板出入りしない方が良いぜ(>>906-907 )(^^

920 132人目の素数さん 2017/08/22(火) 15:19:10 ID:
>>919 誤植(^^

誤:y'=df(x)/dx=df(X)/dX・dX/xdx=-sin(X)・A=-Asin(x / A)

正:y'=df(x)/dx=df(X)/dX・dX/xdx=-Asin(X)/A=-sin(x / A)

921 132人目の素数さん 2017/08/22(火) 15:39:53 ID:
ところで、¥さんも、野焼き、ご精が出ますね(^^
ご苦労さまです
ところで、例の清水明さんの話、面白かったね
落ち着いたらまた

922 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:01:58 ID:

923 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:02:15 ID:

924 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:02:33 ID:

925 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:02:51 ID:

926 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:03:08 ID:

927 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:03:26 ID:

928 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:03:45 ID:

929 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:04:03 ID:

930 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:04:22 ID:

931 ¥ ◆2VB8wsVUoo 2017/08/22(火) 16:04:40 ID:

932 132人目の素数さん 2017/08/22(火) 16:26:06 ID:
>>919
そういうところが同レベルの所以なんだよ
「自分は正しいことをしている、他人に文句を言われる筋合いはない」
そう考えてるんだろう

933 132人目の素数さん 2017/08/22(火) 16:46:53 ID:
>>919
>スタンバイ中でヒマなんよ(^^
何やってるの?

934 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:10:30 ID:

935 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:10:50 ID:

936 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:11:08 ID:

937 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:11:25 ID:

938 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:11:41 ID:

939 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:11:57 ID:

940 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:12:14 ID:

941 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:12:32 ID:

942 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:12:48 ID:

943 ¥ ◆2VB8wsVUoo 2017/08/22(火) 17:13:04 ID:

944 132人目の素数さん 2017/08/22(火) 18:58:25 ID:
>>790
> n 乗根についてなのですが、赤い線を引いたところが意味不明です。
>
> なぜ、「x^2」、「n^2」となっているのでしょうか?

「n^2」の n は、それを含む文(その直前の「次に」から「~でなければならない.」までで一つの主張=論理式を日本語で
書き下した内容)の内部で束縛されている。具体的には、「n=1, 2, ・・・に対して」という言葉によってだ。
(「次に、」の後を記号論理風に書くと 「¥forall n¥in{1, 2, ...}. 0<n¥le n^2¥in J」とでも書けて、
全称限量子 ¥forall n¥in ~ によって束縛されている)

その前の「x^2」の変数「x」は画像の2行目終わり~3行目始めの「I=[0,¥infty)上で定義された関数 f(x)=x^n を考える.」という文に
よって「¥forall x ¥in I」という全称限量子によって、この文以降の例の終わりまでの範囲で束縛されいると考えるべきなのです。
(つまり、その x の束縛範囲の中で局所的に変数 n が束縛された論理式=主張が書かれていると読むべき)

それで、変数を x と n との2つを使っている理由は恐らくは、x などは実数値をとる変数として、n などは整数値限定の変数として、
それぞれ使い分けたいからでしょうね。

945 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:25:34 ID:

946 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:25:53 ID:

947 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:26:12 ID:

948 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:26:30 ID:

949 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:26:48 ID:

950 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:27:05 ID:

951 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:27:26 ID:

952 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:27:44 ID:

953 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:28:01 ID:

954 ¥ ◆2VB8wsVUoo 2017/08/22(火) 19:28:21 ID:

955 132人目の素数さん 2017/08/22(火) 20:41:54 ID:
次の式から任意定数 A, B, C を消去して、 y に関する微分方程式を作れ。

A*x^2 + 2*B*x*y + C*y^2 = 1

これはどうやって解くのでしょうか?

956 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:47:02 ID:

957 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:47:20 ID:

958 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:47:38 ID:

959 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:47:55 ID:

960 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:48:13 ID:

961 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:48:30 ID:

962 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:48:48 ID:

963 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:49:05 ID:

964 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:49:25 ID:

965 ¥ ◆2VB8wsVUoo 2017/08/22(火) 20:49:45 ID:

966 132人目の素数さん 2017/08/22(火) 22:03:49 ID:
>>955

任意定数を消去する一般的な方法を教えてください。

967 132人目の素数さん 2017/08/22(火) 22:07:43 ID:
消しゴム使え

968 132人目の素数さん 2017/08/22(火) 22:09:08 ID:
わからないんですね(笑)

969 132人目の素数さん 2017/08/22(火) 22:09:34 ID:
パラメーターは理由があって導入されている場合が多い
だから、普通は消せない
但し、パラメーターの数を減らせる特殊な場合はあるよね

970 132人目の素数さん 2017/08/22(火) 22:10:03 ID:
わかりません(^^

971 132人目の素数さん 2017/08/22(火) 22:19:32 ID:
>>955
2回微分すると方程式が3つできるので、それの連立方程式を解く、とかどうでしょうか

972 132人目の素数さん 2017/08/22(火) 22:52:04 ID:
ああ、それはこの場合は、良いかもしれないね
(A,B,C)について線形になりそうだね

973 132人目の素数さん 2017/08/22(火) 22:57:57 ID:
例の>>883の場合は、
y = A * cos(x / A) と、Aが2箇所に出ているからちょっと特殊か?

うーんと
y/A = cos(x / A)
と変形して

Y=y/A , X=x/A とおいて
Y = cos(X)
と変形した方が、形が綺麗かもしれないね(^^

974 132人目の素数さん 2017/08/22(火) 23:28:27 ID:
>>955

http://imgur.com/4k1MUIH.jpg

3階まで x について微分してみました。

975 132人目の素数さん 2017/08/22(火) 23:36:09 ID:
例えば、

4番目の式を利用して、1番目、2番目、3番目の式から C を消去する。

3番目の式を利用して、1番目、2番目の式から B を消去する。

2番目の式を利用して、1番目の式から A を消去する。

という計算でOKですかね?

976 132人目の素数さん 2017/08/22(火) 23:38:05 ID:
例えば、

4番目の式を利用して、1番目、2番目、3番目の式から C を消去する。

C が消えた1番目、2番目、3番目の式を考える。

3番目の式を利用して、1番目、2番目の式から B を消去する。

C、 B が消えた1番目、2番目の式を考える。

2番目の式を利用して、1番目の式から A を消去する。

C、 B、 A が消えた1番目の式が求める答えである。

ということですか?

977 132人目の素数さん 2017/08/22(火) 23:54:02 ID:
F(x,y,A,B,C)=0
F_x(x,y,A,B,C)+F_y(x,y,A,B,C)y'=0
F_xx(x,y,A,B,C)+2F_xy(x,y,A,B,C)y'+F_yy(x,y,A,B,C)(y')^2+F_y(x,y,A,B,C)y''=0

978 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:34:38 ID:

979 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:35:03 ID:

980 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:35:20 ID:

981 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:35:37 ID:

982 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:35:55 ID:

983 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:36:13 ID:

984 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:36:30 ID:

985 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:36:48 ID:

986 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:37:07 ID:

987 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:37:32 ID:

988 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:58:10 ID:

989 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:58:28 ID:

990 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:58:45 ID:

991 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:59:01 ID:

992 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:59:34 ID:

993 ¥ ◆2VB8wsVUoo 2017/08/23(水) 04:59:52 ID:

994 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:00:08 ID:

995 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:00:25 ID:

996 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:00:42 ID:

997 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:00:59 ID:

998 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:01:16 ID:

999 ¥ ◆2VB8wsVUoo 2017/08/23(水) 05:01:35 ID:

1000 猫 ◆2VB8wsVUoo 2017/08/23(水) 05:01:55 ID:

新着レスの表示
レス数が1000を超えています。これ以上書き込みはできません。
■トップページに戻る■ お問い合わせ/削除依頼